PROGRESS IN Al FOR

RETINAL IMAGE ANALYSIS

This technology is showing promise for disease risk stratification, diagnostic imaging,
patient scheduling, and educational applications.
BY SAYENA JABBEHDARI, MD, MPH, MBA, AND J. FERNANDO AREVALO, MD, PHD

Health care is rapidly evolving due
to technological advances and the
accessibility of big data. In retina,
the growing interest in Al is driven
by the field’s reliance on routine
imaging data that require daily review and interpretation
for managing retinal pathologies.’ Al holds significant
promise for revolutionizing ophthalmology by advancing
diagnostic, predictive, and management processes. Al has
evolved into sophisticated tools applicable across three
primary research domains: prediction, causal inference,
and description.? Supervised Al excels in predictive tasks,
such as classifying retinal pathologies using labeled data
and training sets of images to identify the characteristics of
normal versus abnormal conditions.!

Clinically, Al has been employed in disease risk
stratification, diagnostic imaging, patient scheduling, and
educational applications, with surveys indicating that
ophthalmologists anticipate significant improvements in
patient care and screening efficiency through Al integration.?

Al'IN FUNDUS IMAGING

Al has emerged as a promising tool for enhancing
screening capabilities in both acute and chronic clinical
settings. The Retinopathy Online Challenge, established
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in 2010 by the University of lowa, exemplifies efforts
to advance Al in this domain by evaluating algorithms
for microaneurysm detection on a standardized
dataset of fundus images.* Notable Al systems, such
as those developed by Antal et al and Budak et al,
have demonstrated significant accuracy in identifying
microaneurysm lesions (Figure 1).>¢

Recent innovations have also targeted retinal vessel
detection despite the variation in vascular morphology and
crowded background. In addition, a deep convolutional
neural network (CNN) model for retinal vessel extraction,
which achieved high accuracy and area under the receiver
operating characteristic curve (AUC) values, has been
introduced.? Despite these advances, challenges remain
in detecting neovascular changes associated with diabetic
retinopathy (DR). Al systems, such as those developed by
Rajalakshmi et al, have shown high sensitivity and speci-
ficity for DR detection using fundus images, while models
by Pawar et al have outperformed ophthalmologists in
identifying sight-threatening DR.®

FDA-approved Al systems—VoxelCloud Retina,
IDx-DR (Digital Diagnostics) and EyeArt (EyeNuk)—are
currently used for the screening of more-than-mild cases
of DR, with others like CLAIR, BioAge, and Theia (Toku
Eyes) undergoing approval processes for the detection
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Figure 1. Widefield pseudocolor fundus photographs of the right (A) and left (B) eye
show areas of microaneurysms, dot-and-blot hemorrhages, intraretinal microvascular
abnormalities, and regions suspicious for neovascularization. The white rectangles show
the labelling used by Al to detect DR.

of systemic cardiovascular risk factors based on fundus
imaging>'® Al's application extends to detecting multiple
retinal pathologies, including AMD and retinal vascular
occlusion (RVO). For instance, algorithms developed by
Stevenson et al and Bhuiyan et al have achieved high
accuracy in diagnosing various retinal conditions.?

Moreover, novel approaches, such as those integrating
style transfer networks with registration networks, have
enhanced image alignment and accuracy. However,
real-world validation of retinal imaging data remains
imperative.® A study by Lee et al revealed performance
discrepancies between Al models in controlled studies
compared with real-world clinical settings, highlighting
the necessity for comprehensive validation before broader
clinical implementation."

AL'IN OCT IMAGES

OCT is instrumental in detecting intra- and subretinal fluid
accumulation and abnormalities in retinal layer thickness,
which are critical biomarkers in the diagnosis and manage-
ment of numerous retinal pathologies, such as diabetic
macular edema, AMD, RVO, and central serous retinopathy
(CSR).™> Early applications of deep learning (DL) in OCT
involved boundary detection of retinal layers, a critical step
for evaluating disease states. For example, Fabritius et al
achieved 96.7% accuracy in retinal pigment epithelium
segmentation using DL on 1,022 macular OCT images,
marking a significant advancement in retinal imaging.'

Subsequent models have made improvements,
with Hussain et al’s algorithm demonstrating superior
performance in detecting retinal layer boundaries, such
as the internal limiting membrane and retinal pigment
epithelium."™ Their model outperformed earlier tools
like OCTRIMA-3D and AURA, with improved root-
mean-square error for key retinal layers."™'® In addition
to boundary detection, DL models have been applied to
pathology identification in OCT.

Chakravathy et al developed a DL algorithm that detected
intraretinal and subretinal fluid with an AUC of 0.97 and
91% accuracy, comparable with expert retina specialists.”
Zang et al created a model capable of screening for DR and

Figure 2. FA of the right (A) and left (B) eye reveals hyperfluorescent areas corresponding
to leakage from neovascularization and hypofluorescent areas corresponding to severe
ischemia indicating proliferative DR in each eye. The white rectangles show the labelling
used by Al to detect DR.

staging disease severity using both OCT and OCT angiog-
raphy, achieving an AUC of 0.96." Occlusion testing has
also been employed to identify novel regions of interest in
OCT images. For example, Lee et al used occlusion testing to
identify fluid accumulation in AMD images, generating heat
maps that highlighted areas potentially missed by human
graders. These advances demonstrate the utility of DL in
enhancing diagnostic accuracy and staging in retinal diseases,
making it a valuable tool for clinical decision making.
Taking this one step further, researchers have developed
an Al algorithm (Deepeye) that uses OCT images to
identify AMD disease activity and provide treatment
recommendations to help clinicians optimize vision
outcomes with anti-VEGF therapy.?°

AL'IN FLUORESCEIN ANGIOGRAPHY

Traditional clinical assessment of nonperfusion areas on
fluorescein angiography (FA) is based on indirect markers
of ischemia, such as the ischemic index, which typically
manifest in advanced stages of disease. This limitation
underscores the need for automated detection systems
capable of identifying subtle ischemic changes at earlier
stages, thereby providing timely and reliable guidance for
clinical decision making.2"?2

AT A GLANCE

» Al has been employed in disease risk stratification,
diagnostic imaging, patient scheduling, and educational
applications.

» Early applications of deep learning in OCT involved boundary
detection of retinal layers, and recent advances have led to
the use of deep learning for pathology identification in OCT.

» Despite its advantages, Al in clinical practice faces
several challenges, including data integrity, medicolegal
accountability, and potential shifts in the patient-physician
relationship.
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Al HAS EMERGED AS A PROMISING TOOL FOR ENHANCING

SCREENING CAPABILITIES IN BOTH ACUTE AND CHRONIC

CLINICAL SETTINGS.

Recent advances in DL have shown promise in improving
the detection of nonperfusion and other pathological
features in FA images (Figure 2). Gao et al compared the
performance of three CNNs—VGG16, ResNet50, and
DenseNet—for identifying nonperfusion in DR.2 Using a
dataset of 11,214 FA images from 705 patients, the VGG16
model demonstrated superior performance, with an
accuracy of 94.17% and an AUC of 0.972, outperforming
human graders. Similarly, Jin et al employed ResNet50 on
3,014 FA images from 221 patients with diabetic macular
edema, achieving an AUC of 0.8855 for nonperfusion
areas, further highlighting the potential of DL models for
automated retinal analysis.>

In other retinal conditions, such as neovascular AMD
and CSR, DL models have also been successfully applied
to detect choroidal neovascularization and leakage.

For instance, Chen et al used an attention-gated CNN
to identify leakage points in CSR with an accuracy

of 93.4%, surpassing the 89.7% accuracy achieved by
ophthalmologists. These studies illustrate the growing
utility of DL-based models in enhancing the diagnostic
capabilities of FA in clinical practice.?®

PROCEED WITH CAUTION

The integration of Al into ophthalmology presents
significant potential to enhance diagnostic precision, opti-
mize patient outcomes, and increase health care efficiency.
However, the clinical application of Al faces several chal-
lenges, including data integrity, medicolegal accountability,
and potential shifts in the patient-physician relationship.
The garbage in, garbage out phenomenon highlights the
critical need for high-quality input data to ensure the reli-
ability and accuracy of Al-driven predictions. Furthermore,
ethical and legal concerns, particularly related to data
privacy and the delegation of decision making, require
robust regulatory frameworks. Despite these challenges,
ongoing prospective trials and advances in multimodal Al
systems underscore the promise of Al in complementing
ophthalmologists, improving retinal diagnostics, and
enhancing clinical workflows. The successful integration of
Al into ophthalmology could lead to more efficient, cost-
effective, and accurate retinal care in the future. m
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