
Health care is rapidly evolving due 
to technological advances and the 
accessibility of big data. In retina, 
the growing interest in AI is driven 
by the field’s reliance on routine 

imaging data that require daily review and interpretation 
for managing retinal pathologies.1-3 AI holds significant 
promise for revolutionizing ophthalmology by advancing 
diagnostic, predictive, and management processes. AI has 
evolved into sophisticated tools applicable across three 
primary research domains: prediction, causal inference, 
and description.2 Supervised AI excels in predictive tasks, 
such as classifying retinal pathologies using labeled data 
and training sets of images to identify the characteristics of 
normal versus abnormal conditions.1 

Clinically, AI has been employed in disease risk 
stratification, diagnostic imaging, patient scheduling, and 
educational applications, with surveys indicating that 
ophthalmologists anticipate significant improvements in 
patient care and screening efficiency through AI integration.2 

 A I  I N F U N D U S I M A G I N G 
AI has emerged as a promising tool for enhancing 

screening capabilities in both acute and chronic clinical 
settings. The Retinopathy Online Challenge, established 

in 2010 by the University of Iowa, exemplifies efforts 
to advance AI in this domain by evaluating algorithms 
for microaneurysm detection on a standardized 
dataset of fundus images.4 Notable AI systems, such 
as those developed by Antal et al and Budak et al, 
have demonstrated significant accuracy in identifying 
microaneurysm lesions (Figure 1).5,6 

Recent innovations have also targeted retinal vessel 
detection despite the variation in vascular morphology and 
crowded background. In addition, a deep convolutional 
neural network (CNN) model for retinal vessel extraction, 
which achieved high accuracy and area under the receiver 
operating characteristic curve (AUC) values, has been 
introduced.2 Despite these advances, challenges remain 
in detecting neovascular changes associated with diabetic 
retinopathy (DR). AI systems, such as those developed by 
Rajalakshmi et al, have shown high sensitivity and speci-
ficity for DR detection using fundus images, while models 
by Pawar et al have outperformed ophthalmologists in 
identifying sight-threatening DR.7,8

FDA-approved AI systems—VoxelCloud Retina, 
IDx-DR (Digital Diagnostics) and EyeArt (EyeNuk)—are 
currently used for the screening of more-than-mild cases 
of DR, with others like CLAiR, BioAge, and Theia (Toku 
Eyes) undergoing approval processes for the detection 
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of systemic cardiovascular risk factors based on fundus 
imaging.9,10 AI’s application extends to detecting multiple 
retinal pathologies, including AMD and retinal vascular 
occlusion (RVO). For instance, algorithms developed by 
Stevenson et al and Bhuiyan et al have achieved high 
accuracy in diagnosing various retinal conditions.2

Moreover, novel approaches, such as those integrating 
style transfer networks with registration networks, have 
enhanced image alignment and accuracy. However, 
real-world validation of retinal imaging data remains 
imperative.3 A study by Lee et al revealed performance 
discrepancies between AI models in controlled studies 
compared with real-world clinical settings, highlighting 
the necessity for comprehensive validation before broader 
clinical implementation.11

 A I  I N O C T I M A G E S 
OCT is instrumental in detecting intra- and subretinal fluid 

accumulation and abnormalities in retinal layer thickness, 
which are critical biomarkers in the diagnosis and manage-
ment of numerous retinal pathologies, such as diabetic 
macular edema, AMD, RVO, and central serous retinopathy 
(CSR).12-14 Early applications of deep learning (DL) in OCT 
involved boundary detection of retinal layers, a critical step 
for evaluating disease states. For example, Fabritius et al 
achieved 96.7% accuracy in retinal pigment epithelium 
segmentation using DL on 1,022 macular OCT images, 
marking a significant advancement in retinal imaging.12 

Subsequent models have made improvements, 
with Hussain et al’s algorithm demonstrating superior 
performance in detecting retinal layer boundaries, such 
as the internal limiting membrane and retinal pigment 
epithelium.15 Their model outperformed earlier tools 
like OCTRIMA-3D and AURA, with improved root-
mean-square error for key retinal layers.15,16 In addition 
to boundary detection, DL models have been applied to 
pathology identification in OCT. 

Chakravathy et al developed a DL algorithm that detected 
intraretinal and subretinal fluid with an AUC of 0.97 and 
91% accuracy, comparable with expert retina specialists.17 
Zang et al created a model capable of screening for DR and 

staging disease severity using both OCT and OCT angiog-
raphy, achieving an AUC of 0.96.18 Occlusion testing has 
also been employed to identify novel regions of interest in 
OCT images. For example, Lee et al used occlusion testing to 
identify fluid accumulation in AMD images, generating heat 
maps that highlighted areas potentially missed by human 
graders. These advances demonstrate the utility of DL in 
enhancing diagnostic accuracy and staging in retinal diseases, 
making it a valuable tool for clinical decision making.19

Taking this one step further, researchers have developed 
an AI algorithm (Deepeye) that uses OCT images to 
identify AMD disease activity and provide treatment 
recommendations to help clinicians optimize vision 
outcomes with anti-VEGF therapy.20

 A I  I N F L U O R E S C E I N A N G I O G R A P H Y 
Traditional clinical assessment of nonperfusion areas on 

fluorescein angiography (FA) is based on indirect markers 
of ischemia, such as the ischemic index, which typically 
manifest in advanced stages of disease. This limitation 
underscores the need for automated detection systems 
capable of identifying subtle ischemic changes at earlier 
stages, thereby providing timely and reliable guidance for 
clinical decision making.21,22
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 �Despite its advantages, AI in clinical practice faces 
several challenges, including data integrity, medicolegal 
accountability, and potential shifts in the patient-physician 
relationship.

AT A GLANCE

Figure 1. Widefield pseudocolor fundus photographs of the right (A) and left (B) eye 
show areas of microaneurysms, dot-and-blot hemorrhages, intraretinal microvascular 
abnormalities, and regions suspicious for neovascularization. The white rectangles show 
the labelling used by AI to detect DR.

Figure 2. FA of the right (A) and left (B) eye reveals hyperfluorescent areas corresponding 
to leakage from neovascularization and hypofluorescent areas corresponding to severe 
ischemia indicating proliferative DR in each eye. The white rectangles show the labelling 
used by AI to detect DR. 
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Recent advances in DL have shown promise in improving 
the detection of nonperfusion and other pathological 
features in FA images (Figure 2). Gao et al compared the 
performance of three CNNs—VGG16, ResNet50, and 
DenseNet—for identifying nonperfusion in DR.23 Using a 
dataset of 11,214 FA images from 705 patients, the VGG16 
model demonstrated superior performance, with an 
accuracy of 94.17% and an AUC of 0.972, outperforming 
human graders. Similarly, Jin et al employed ResNet50 on 
3,014 FA images from 221 patients with diabetic macular 
edema, achieving an AUC of 0.8855 for nonperfusion 
areas, further highlighting the potential of DL models for 
automated retinal analysis.24

In other retinal conditions, such as neovascular AMD 
and CSR, DL models have also been successfully applied 
to detect choroidal neovascularization and leakage. 
For instance, Chen et al used an attention-gated CNN 
to identify leakage points in CSR with an accuracy 
of 93.4%, surpassing the 89.7% accuracy achieved by 
ophthalmologists. These studies illustrate the growing 
utility of DL-based models in enhancing the diagnostic 
capabilities of FA in clinical practice.25

 P R O C E E D W I T H C A U T I O N 
The integration of AI into ophthalmology presents 

significant potential to enhance diagnostic precision, opti-
mize patient outcomes, and increase health care efficiency. 
However, the clinical application of AI faces several chal-
lenges, including data integrity, medicolegal accountability, 
and potential shifts in the patient-physician relationship. 
The garbage in, garbage out phenomenon highlights the 
critical need for high-quality input data to ensure the reli-
ability and accuracy of AI-driven predictions. Furthermore, 
ethical and legal concerns, particularly related to data 
privacy and the delegation of decision making, require 
robust regulatory frameworks. Despite these challenges, 
ongoing prospective trials and advances in multimodal AI 
systems underscore the promise of AI in complementing 
ophthalmologists, improving retinal diagnostics, and 
enhancing clinical workflows. The successful integration of 
AI into ophthalmology could lead to more efficient, cost-
effective, and accurate retinal care in the future.  n
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