Pharmacotherapy for Radiation Retinopathy

BY S.K. STEVEN HOUSTON III, MD; TIMOTHY G. MURRAY, MD, MBA; YOLANDA PINA, BA; CHRISTINA DECATUR, BS; LUDIMILA CAVALCANTE, BS; AND ARNOLD M. MARKOE, MD

lmost a decade ago, the Collaborative Ocular Melanoma Study (COMS) produced data showing no statistically significant difference in survival rates between patients with medium choroidal melanoma treated with either enucleation or plaque brachytherapy. Thus, the primary treatment for mediumsized choroidal melanomas now utilizes a globe-salvaging approach.² Various radioisotopes are employed, including 192lr, 125l, 106Ru, 103Pd, and 60Co. Retinal tolerances to the effects of radiation usually are far inferior to the therapeutic doses for tumor treatment.³ As a result. retinopathy secondary to radiation has been found to vary from 10% to 62.8%,4-12 with mean time to onset of 25.6 months (range, 8 to 74.9).13 These data correspond to the

COMS study finding that 55% of patients treated with radiation had evidence of radiation retinopathy. Higher frequencies of radiation retinopathy have been correlated with increased tumor height, basal diameter, and thickness; higher radiation doses; and closer distance to the macula and fovea. 5,15-17

Radiation retinopathy manifests clinically similarly to diabetic retinopathy, with vascular changes including microaneurysms, retinal hemorrhages, exudates, telangiectatic vessels, cotton-wool spots from nerve fiber layer infarcts, as well as capillary nonperfusion and neovascularization.¹⁸ The earliest sign of radiation effects, however, is macular edema, which was found to have a mean time of onset of 12-months based on optical coherence tomography (OCT), with some patients manifesting edema as early as 4 months. Additionally, at 2 years' follow-up, 70% of 135 patients were found to have macular

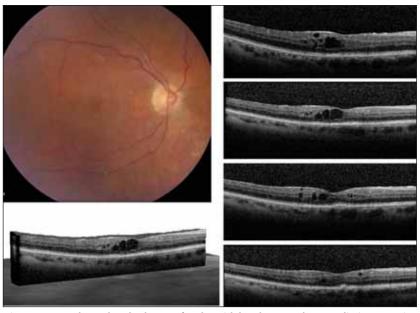


Figure 1. Post-plaque brachytherapy for choroidal melanoma shows radiation-associated macular edema (fundus photo – top left) and intraretinal edema with cysts (OCT, right; 3-D OCT construction, bottom left).

edema by OCT, whereas only 38% were found to have clinical changes consistent with radiation retinopathy. Visual acuity can be variable at presentation, but median visual acuity at the onset of macular edema determined by OCT has been shown to be 20/40.¹⁷

CLASSIFICATION

The basis for classification of radiation retinopathy has progressed over the years, from clinical findings to fluorescein angiography, and recently to OCT. Early studies established fluorescein angiography as the gold standard for dividing retinopathy into ischemic or nonischemic. Macular edema was classified based on patterns of fluorescein leakage. Others have classified radiation retinopathy based on the Early Treatment Diabetic Retinopathy Study (ETDRS), using the ETDRS criteria for clinically significant macular edema (CSME) to apply

to clinically significant radiation macular edema (CSRME).22,23 Earlier classification schemes were well-suited for use of focal laser photocoagulation as primary treatment. More recently, a staging system was developed to classify radiation retinopathy based on macular and extramacular changes. The system consisted of four stages, with stage 1 indicating extramacular ischemic changes and stage 2 macular ischemic changes. Stage 3 was presence of macular edema and retinal neovascularization, and stage 4 indicated vitreous hemorrhage and extensive retinal ischemia. 17,24 Now, however, with the advent of intravitreal agents, steroids and antiangiogenesis, and the recognition that findings of macular edema may occur as early as 4 months after radiation, a system based on OCT has been developed. Grading of OCT findings was based on a 5-stage scale of worsening macular edema. Grade 1 indicates extrafoveal, non-cystoid edema;

grade 2 extrafoveal cystoid edema; grade 3 foveolar, noncystoid edema; grade 4 mild-moderate foveolar cystoids edema; and grade 5 severe foveolar cystoid edema.¹⁷

PATHOGENESIS

Vascular endothelial growth factor (VEGF) has been shown to be a potent vascular permeability factor^{25,26} that is elevated in eyes with ischemia. Studies have shown increased VEGF expression in eyes with choroidal melanoma, with the highest levels found in those receiving radiation treatment.^{27,28} Radiation-induced macular edema is secondary to vascular permeability and leakage as seen on fluorescein angiography. VEGF has been postulated to contribute to the pathogenesis of macular edema secondary to radiation.¹⁷ Additionally, other factors and cytokines, including interleukin-1 and -8 (IL-1, IL-8), and intracellular adhesion molecule-1 (ICAM-1), potentially contribute to vascular permeability and the pathogenesis of macular edema.²⁹ Intravitreal steroids and anti-VEGF agents have been used successfully in the treatment of other retinal diseases, including age-related macular degeneration (AMD),30 central and branch retinal vein occlusion (CRVO and BRVO), and diabetic macular edema.31 These findings suggest that the use of intravitreal anti-VEGF agents and triamcinolone may be

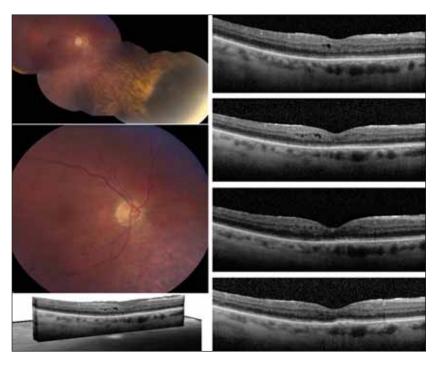


Figure 2. Fundus of same patient after intravitreal bevacizumab shows improvement in intraretinal edema and cysts, with corresponding improvement in visual acuity by 1 line. Montage fundus photo and fundus photo (top and bottom left), with corresponding OCT images through the fovea (right).

effective in treating radiation retinopathy-related macular edema.

CORTICOSTEROIDS

Triamcinolone acetonide is a corticosteroid that has been studied for the treatment of macular edema associated with diabetes³²⁻³⁴ and retinal vein occlusions,³⁵ with results inferior to focal/grid photocoagulation. Actions of triamcinolone are proposed to be secondary to the effect of decreasing vascular permeability through reductions in VEGF secretion and downregulation of VEGF gene expression and other cytokines, ultimately leading to restoration of the inner blood-retinal barrier.36-41 Intravitreal triamcinolone has been shown to be effective in case reports, with early demonstration of potential in a patient with radiation retinopathy unresponsive to focal laser therapy.⁴² A single intravitreal injection of 4 mg/0.1 mL triamcinolone was shown to improve visual acuity and central macular thickness (CMT) on OCT, with effects persisting for 3 months. 42 Following initial case reports, Shields et al⁴³ described 31 patients with radiation-associated macular edema who were treated with 4 mg/0.1 mL intravitreal triamcinolone. At 1 month, visual acuity was stabilized or improved in 91% of patients, and at 6 months this dropped to 45%. OCT central macular thickness

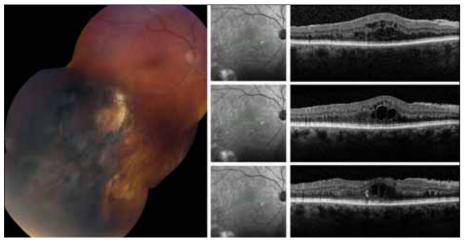


Figure 3. Severe radiation-associated macular edema. Montage photo (left) shows tumor in close proximity to the fovea, increasing likelihood of developing radiation retinopathy. OCT scout images (center) and corresponding OCT images (right) show severe elevation of the fovea with intraretinal fluid and cysts.

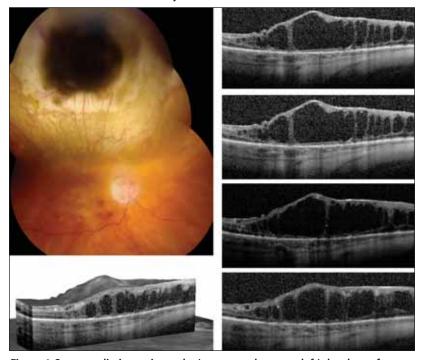


Figure 4. Severe radiation retinopathy (montage photo, top left) develops after plaque brachytherapy for choroidal melanoma. Close proximity to fovea resulted in severe macular edema (OCT, right, and 3-D construction, bottom left).

decreased from 417 μ m to 292 μ m at 6 months. These initial results show a promising response of edema to triamcinolone that is not sustained, and long-term results are not yet available. Additionally, side effects including cataracts, intraocular pressure (IOP) increases, and risk for infection must be carefully considered.

Periocular delivery of triamcinolone for radiation-asso-

ciated macular edema has also been investigated. Horgan et al⁴⁴ treated 55 patients at the time of plaque radiotherapy, then 4 and 8 months later with 40 mg periocular triamcinolone. Compared with controls, periocular triamcinolone significantly reduced clinical radiation maculopathy from 41% to 16%, thus reducing the risk of developing macular edema (P=.002). There was no statistically significant difference, however, at 24 months, regarding rates of moderate to severe vision loss, and side effects included IOP increases in 7%

of patients and cataract progression in 45%. Subsequent studies from the same group reported the results of a randomized controlled trial of 108 patients treated with 40 mg of periocular triamcinolone at the same intervals as the prior study. They again found that at 18 months, triamcinolone significantly decreased the risk of macular edema as determined by OCT (P=.001), but they also determined that moderate to severe visual loss was significantly reduced at 18 months (31% vs 48%) in patients treated with triamcinolone. Side effects were similar between the groups.45 These studies, along with earlier studies with prophylactic laser photocoagulation,²⁴ suggest that early treatment may be beneficial in preventing clinically significant radiationassociated effects.

Finally, a pilot study by Horgan et al compared intravitreal triamcinolone (4mg/0.1 mL) to intravitreal bevacizum-

ab (1.25 mg/0.05 mL) in patients with radiation-associated macular edema. Of 18 patients treated with triamcinolone, 11 (72%) gained one or more lines of Snellen visual acuity, and a reduction in CMT of 172 μ m at a mean. In seven patients treated with bevacizumab, only one (14%) had an improvement in visual acuity of one or more lines, and mean CMT increased by 51 μ m at a mean of 3 months (Horgan et

al, ISOO meeting Cambridge 2009). The results indicated a significant difference between the two pharmacotherapies; however, sample sizes were small and follow-up short.

ANTI-VEGF

Bevacizumab and ranibizumab are monoclonal antibodies that target VEGF, a key mediator of vascular permeability and angiogenesis in various retinal diseases, including AMD, CRVO, BRVO, diabetes, and retinopathy of prematurity. Bevacizumab and ranibizumab have shown promising results in a number of important clinical trials (MARINA, ANCHOR, BRAVO). Additionally, as the pathogenesis of radiation retinopathy has been shown to involve VEGF, anti-VEGF agents have been investigated for its treatment. Intravitreal bevacizumab has been shown to be effective in improving visual acuity and decreasing macular edema in a number of case reports with short follow-up. 46,47 Several case series have shown mixed results, with patients showing only modest improvements. Mason et al⁴⁸ reported that in 10 patients treated with bevacizumab (1.25mg/0.5mL), CMT improved from 482 µm to 284 µm at 6 weeks, regressing to 449 µm at 4 months. Visual acuity improved from 20/100 to 20/86 at 6 weeks, with decrease to 20/95 at 4 months. Finger et al⁴⁹ reported on six patients treated with intravitreal bevacizumab (1.25 mg/0.05 mL) every 6 to 8 weeks, with improvement or stabilization of vision in all patients and a reduction in macular edema at a mean follow-up of 4.7 months. Gupta and Muecke⁵⁰ investigated intravitreal bevacizumab (1.25 mg/0.05 mL) injected one or two times at 4-week intervals. In the five patients studied, two patients with good visual acuity at baseline had modest 1-line improvements, while three patients remained unchanged. These small studies report mixed results and initial responses that are not sustained with longer follow-up.

Finger et al⁵¹ reported on a larger series of 21 patients in which intravitreal bevacizumab (1.25 mg/0.05 mL) was injected every 6 to 12 weeks. At a mean follow-up of 7.8 months, 18 patients (86%) had improvement or stabilization of visual acuity, and three (14%) improved by two or more lines of vision. The authors also report improvement in vascular leakage as determined by fluorescein angiography. Another report by the same group investigated the use of ranibizumab for radiation retinopathy in five patients. A mean of 8.2 injections of ranibizumab (0.5 mg) was given over a mean follow-up of 8 months. Visual acuity improved by a mean of six letters, with four patients showing a modest improvement on average of 9.5 letters, and one patient losing seven letters. A decrease in vascular leakage and macular edema was seen, and

CMT thickness decreased from 416 μ m to 270 μ m, a 35% reduction. Adverse effects were minimal, including subconjunctival hemorrhage at the injection site and transient post-injection IOP elevations. These studies show that periodic dosing, such as is used in treatment of AMD, may be beneficial in sustaining a treatment effect.

At Bascom Palmer Eye Institute, we have performed a series of 5,496 intravitreal bevacizumab injections for radiation retinopathy.53 Based on our experience (Figures 1-4), early identification of radiation retinopathy using OCT, followed by early treatment, results in stability and often improvement in visual acuity. Our group has also observed combined efficacy of triamcinolone and bevacizumab in the treatment of radiation-associated macular edema, possibly indicating a synergistic effect of combined therapy. Longer-term follow-up is needed on the efficacy of intravitreal anti-VEGF agents in the treatment of radiation retinopathy, but contrary to prior reports suggesting limited usefulness of anti-VEGF agents in this disease, these preliminary reports and observations warrant further studies to define the role these agents will have in an entity with no proven standard therapy.

CONCLUSION

Despite globe-salvaging treatments for intraocular neoplasms utilizing radiation, the resultant radiation retinopathy proves to be a formidable complication, as no previous therapies have been proven effective. Early studies on intravitreal triamcinolone have been promising in macular edema associated with radiation with improvement in visual acuity and central macular thickness. The current studies and preliminary results emphasize early detection of radiation-associated macular edema with OCT, as well as early treatment to prevent visual loss. Repetitive treatment with anti-VEGF appears to stabilize macular edema and visual loss. Additionally, the use of combined treatment modalities, particularly anti-VEGF and corticosteroids, warrants further study. We anticipate future studies to investigate and compare the efficacy of current pharmacotherapies in a larger cohort of patients, including the Treatment of Radiation Retinopathy (TORR) trial to evaluate the effects of intravitreal bevacizumab and triamcinolone versus sham injections at 1 year.

S.K. Steven Houston III, MD, is an Ophthalmology Resident at Bascom Palmer Eye Institute, University of Miami Miller School of Medicine.

Yolanda Pina, BA; Christina Decatur, BS; and Ludimila Cavalcante, BS, are Research Associates at the Ocular Oncology Lab at Bascom Palmer Eye Institute.

COVER STORY

Arnold M. Markoe, MD, is a Professor of Radiation Oncology at the University of Miami Miller School of Medicine.

Timothy G. Murray, MD, MBA, FACS, is a Professor of Ophthalmology and Radiation Oncology at the Bascom Palmer Eye Institute, University of Miami Miller School of Medicine and a member of the Retina Today Editorial

Board. He can be reached at +1 305 326 6000, ext. 6166; fax: +1 305 326 6147; or via e-mail at tmurray@med.miami.edu.

The authors report no financial relationships in regard to

The authors report no financial relationships in regard to the content of this article.

- Diener-West M, Earle JD, Fine SL, et al. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma, III: initial mortality findings. COMS Report No. 18. Arch Ophthalmol. 2001;119:969-982.
- The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma: V. Twelveyear mortality rates and prognostic factors: COMS report No. 28. Arch Ophthalmol. 2006;124:1684-1693.
- 3. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. *Int J Radiat Oncol Biol Phys.* 1991;21:109-122.
- 4. Bosworth JL, Packer S, Rotman M, et al. Choroidal melanoma: I-125 plaque therapy. *Radiology*. 1988;169:249-251.
- Stack R, Elder M, Abdelaal A, et al. New Zealand experience of I125 brachytherapy for choroidal melanoma. Clin Experiment Ophthalmol. 2005;33:490-494.
- Sia S, Harper C, McAllister I, et al. Iodine-I25 episcleral plaque therapy in uveal melanoma. Clin Experiment Ophthalmol. 2000;28:409-413.
- 7. Fontanesi J, Meyer D, Xu S, et al. Treatment of choroidal melanoma with I-125 plaque. *Int J Radiat Oncol Biol Phys.*1993;26:619-623.
- 8. Garretson BR, Robertson DM, Earle JD. Choroidal melanoma treatment with iodine 125 brachytherapy. *Arch Ophthalmol*. 1987;105:1394-1397.
- Packer S, Rotman M. Radiotherapy of choroidal melanoma with iodine-125. Ophthalmology. 1980:87:582-590.
- Mameghan H, Karolis C, Fisher R, et al. lodine-125 irradiation of choroidal melanoma: clinical experience from the Prince of Wales and Sydney Eye Hospitals. *Australas Radiol*. 1992;36:249-252.
- 11. Jensen AW, Petersen IA, Kline RW, Stafford SL, Schomberg PJ, Robertson DM. Radiation complications and tumor control after 125I plaque brachytherapy for ocular melanoma. *Int J Radiat Oncol Biol Phys.* 2005;63:101–108.
- 12. Jones R, Gore E, Mieler W, et al. Posttreatment visual acuity in patients treated with episcleral plaque therapy for choroidal melanomas: dose and dose rate effects. *Int J Radiat Oncol Biol Phys.* 2002;52:989-995.
- 13. Quivey JM, Char DH, Phillips TL, Weaver KA, Castro JR, Kroll SM. High intensity 125-iodine (125l) plaque treatment of uveal melanoma. *Int J Radiat Oncol Biol Phys.* 1993;26:613-618.
- 14. Avery RB, Diener-West M, Reynolds SM, Grossniklaus HE, Green WR, Albert DM. Histopathologic characteristics of choroidal melanoma in eyes enucleated after iodine 125 brachytherapy in the collaborative ocular melanoma study. *Arch Ophthalmol*. 2008;126:207-212.
- 15. Puusaari I, Heikkonen J, Kivela T. Ocular complications after iodine brachytherapy for large uveal melanomas. *Ophthalmology*. 2004;111:1768-1777.
- 16. Krohn J, Monge OR, Skorpen TN, et al. Posterior uveal melanoma treated with I-125 brachytherapy or primary enucleation. *Eye* (Lond). 2008;22:1398-1403.
- Horgan N, Shields CL, Mashayekhi A, Teixeira LF, Materin MA, Shields JA. Early macular morphological changes following plaque radiotherapy for uveal melanoma. *Retina*. 2008;28:263-273.
- 18. Brown GC, Shields JA, Sanborn G, Augsburger JJ, Savino PJ, Schatz NJ. Radiation retinopathy. *Ophthalmology*, 1982;89:1494-1501.
- 19. Bresnick GH. Diabetic macular edema. A review. Ophthalmology. 1986;93:989-997.
- 20. Amoaku WM, Archer DB. Fluorescein angiographic features, natural course and treatment of radiation retinopathy. *Eye* (Lond). 1990;4 (Pt 5):657-667.
- 21. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. *Arch Ophthalmol*. 1985:103:1796-1806.
- 22. Kinyoun JL, Zamber RW, Lawrence BS, et al. Photocoagulation treatment for clinically significant radiation macular oedema. Br J Ophthalmol. 1995;79:144-149.
- 23. Hykin PG, Shields CL, Shields JA, et al. The efficacy of focal laser therapy in radiation-induced macular edema. *Ophthalmology*. 1998;105:1425-1429.
- 24. Finger PT, Kurli M. Laser photocoagulation for radiation retinopathy after ophthalmic plaque radiation therapy. *Br J Ophthalmol.* 2005;89:730-738.

- 25. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. *Science*. 1989;246:1306-1309.
- Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25:581-611.
- 27. Missotten GS, Notting IC, Schlingemann RO, et al. Vascular endothelial growth factor A in eyes with uveal melanoma. *Arch Ophthalmol.* 2006;124:1428-1434.
- 28. Boyd SR, Tan D, Bunce C, et al. Vascular endothelial growth factor is elevated in ocular fluids of eyes harbouring uveal melanoma: identification of a potential therapeutic window. *Br J Ophthalmol.* 2002;86:448-452.
- Tamura H, Miyamoto K, Kiryu J, et al. Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. *Invest Ophthalmol Vis Sci.* 2005;46:1440–1444
- 30. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. *N Engl J Med.* 2006;355:1419-1431.
- 31. Nguyen QD, Shah SM, Khwaja AA, et al. Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study. *Ophthalmology*. 117:2146-2151.
- 32. Gillies MC, Sutter FK, Simpson JM, Larsson J, Ali H, Zhu M. Intravitreal triamcinolone for refractory diabetic macular edema: two-year results of a double-masked, placebo-controlled, randomized clinical trial. *Ophthalmology*. 2006;113:1533-1538.
- 33. Ciardella AP, Klancnik J, Schiff W, Barile G, Langton K, Chang S. Intravitreal triamcinolone for the treatment of refractory diabetic macular oedema with hard exudates: an optical coherence tomography study. *Br J Ophthalmol*. 2004;88:1131-1136.
- 34. Larsson J, Zhu M, Sutter F, et al. Relation between reduction of foveal thickness and visual acuity in diabetic macular edema treated with intravitreal triamcinolone. *Am J Ophthalmol*. 2005;139:802-806.
- 35. Blodi BA, Domalpally A, Scott IU, et al. Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) Study system for evaluation of stereoscopic color fundus photographs and fluorescein angiograms: SCORE Study Report 9. *Arch Ophthalmol*. 2010;128:1140-1145. 36. Uckermann O, Kutzera F, Wolf A, et al. The glucocorticoid triamcinolone acetonide inhibits osmotic swelling of retinal glial cells via stimulation of endogenous adenosine signaling. *J Pharmacol Exp Ther*. 2005;315:1036-1045.
- 37. Brooks HL, Jr., Caballero S, Jr., Newell CK, et al. Vitreous levels of vascular endothelial growth factor and stromal-derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol. 2004;122:1801-1807.
- 38. Edelman JL, Lutz D, Castro MR. Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. *Exp Eye Res.* 2005;80:249-258.
- 39. Nyhlen K, Linden M, Andersson R, et al. Corticosteroids and interferons inhibit cytokineinduced production of IL-8 by human endothelial cells. *Cytokine*. 2000;12:355-360. 40. Jermak CM, Dellacroce JT, Heffez J, et al. Triamcinolone acetonide in ocular therapeutics.
- Surv Ophthalmol. 2007;52:503-522.
 41. Gillies MC. Regulators of vascular permeability: potential sites for intervention in the treatment of macular edema. Doc Ophthalmol. 1999;97:251-260.
- 42. Sutter FK, Gillies MC. Intravitreal triamcinolone for radiation-induced macular edema. *Arch Ophthalmol*, 2003;121:1491-1493.
- 43. Shields CL, Demirci H, Dai V, et al. Intravitreal triamcinolone acetonide for radiation maculopathy after plaque radiotherapy for choroidal melanoma. *Retina*. 2005;25:868-874.
- 44. Horgan N, Shields CL, Mashayekhi A, et al. Periocular triamcinolone for prevention of macular edema after iodine 125 plaque radiotherapy of uveal melanoma. *Retina*. 2008;28:987-995.
- 45. Horgan N, Shields CL, Mashayekhi A, et al. Periocular triamcinolone for prevention of macular edema after plaque radiotherapy of uveal melanoma: a randomized controlled trial. *Ophthalmology*. 2009;116:1383-1390.
- Arriola-Villalobos P, Donate-Lopez J, Calvo-Gonzalez C, Reche-Frutos J, Alejandre-Alba N, Diaz-Valle D. Intravitreal bevacizumab (Avastin) for radiation retinopathy neovascularization. *Acta Ophthalmol.* 2008;86:115–116.
- 47. Ziemssen F, Voelker M, Altpeter E, et al. Intravitreal bevacizumab treatment of radiation maculopathy due to brachytherapy in choroidal melanoma. *Acta Ophthalmol Scand*. 2007;85:579-580.
- Mason JO, 3rd, Albert MA, Jr., Persaud TO, et al. Intravitreal bevacizumab treatment for radiation macular edema after plaque radiotherapy for choroidal melanoma. *Retina*. 2007;27:903-907
- 49. Finger PT, Chin K. Anti-vascular endothelial growth factor bevacizumab (Avastin) for radiation retinopathy. *Arch Ophthalmol*. 2007;125:751-756.
- Gupta A, Muecke JS. Treatment of radiation maculopathy with intravitreal injection of bevacizumab (Avastin). Retina. 2008;28:964-968.
- 51. Finger PT. Radiation retinopathy is treatable with anti-vascular endothelial growth factor bevacizumab (Avastin). *Int J Radiat Oncol Biol Phys.* 2008;70:974-977.
- 52. Finger PT, Chin KJ, Yu GP. Risk factors for radiation maculopathy after ophthalmic plaque radiation for choroidal melanoma. *Am J Ophthalmol*. 149:608-615.
- 53. Cavalcante LL, Cavalcante ML, Murray TG, et al. Intravitreal injection analysis at the Bascom Palmer Eye Institute: evaluation of clinical indications for the treatment and incidence rates of endophthalmitis. *Clin Ophthalmol*. 2010;4:519-524.