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USING Al TO IDENTIFY
PATHOLOGIC MYOPIA AND
MYOPIC MACULOPATHY

How research on the use of Al can translate to future clinical applications.

BY YINING WANG, MD; TIEN YIN WONG, MBBS, MMED (OPHTH), MPH, PHD; AND KYOKO OHNO-MATSUI, MD, PHD

athologic myopia (PM) is a leading cause of irre-

versible blindness in East Asia and a growing

global public health concern.™ According to the

International Myopia Institute, PM is characterized

by excessive axial elongation associated with myopia,
resulting in structural changes in the posterior segment of
the eye, such as posterior staphyloma, myopic maculopathy
(MM), and high myopia-associated optic neuropathy.”

To standardize the diagnosis of MM, a classification
system known as the META-analysis for pathologic myopia
(META-PM) was introduced in 2015 based on fundus
photographs.® This system categorizes MM into five grades
(0 to 4) according to the severity of atrophic changes, with
three additional “plus” features: lacquer cracks, myopic
macular neovascularization (MNV), and Fuchs spot. Based
on this classification, PM is defined as myopic eyes with
MM equal to or more severe than diffuse atrophy and/or
eyes with posterior staphyloma.’

Deep learning (DL) architectures—particularly convo-
lutional neural networks (CNNs)—have demonstrated
remarkable efficiency in detecting ocular diseases from
fundus photographs, including the diagnosis and classifica-
tion of PM.'%"" Al-powered DL systems not only offer auto-
mated classification, but also have the potential to enhance
diagnostic efficiency, making them valuable tools for large-
scale screening and clinical decision making (Figure 1)."2

FUNDUS-BASED PM DETECTION USING Al
As a cost-effective and noninvasive imaging modality
widely used in routine eye care, fundus photography

remains the primary choice for Al-driven PM detection. Its
accessibility has facilitated the construction of large-scale
datasets, enabling the development of robust CNN archi-
tectures. Additionally, the META-PM classification based on
fundus imaging aligns well with Al model labeling require-
ments, further supporting automated PM detection.

A recent meta-analysis of 11 studies involving
165,787 eyes reported high diagnostic performance of
Al-based tools in detecting MM and PM from fundus
images, with an area under the summary receiver operator
curve of 0.9905 and a pooled sensitivity of 0.959." Several
representative studies illustrate the evolution of this
field—from simple binary classification (ie, MM vs non-
MM) to more detailed grading across all five META-PM
categories. In 2021, a retrospective multicohort study using
226,686 fundus images from nine multiethnic cohorts
across six regions developed DL algorithms for classifying
high myopia and MM." In the same year, two studies
demonstrated the ability of DL models to classify MM
across categories 0 to 4 and detect “plus” lesions.'>

The application of advanced computer vision techniques
has enhanced the performance and efficiency of Al-based
MM and PM detection. These innovations aim to reduce
reliance on extensive manual annotations and explore the
potential for fully automated diagnosis.

For example, Sun et al introduced a module that used
the information of tessellated fundus and brightest image
regions to assist in lesion localization using coarse-labeled
images.’® Yao et al developed DeepGraFT, a classification-
and-segmentation co-decision model that first applies
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image masking to isolate the region of interest.”” This was
followed by a binary classification for each MM category
by Zhang et al that uses a technique known as
self-supervised learning,'® which refers to the development
of generalist models capable of adapting to various
downstream tasks with significantly less annotated data,
demonstrating promising performance in automated MM
diagnosis and grading.

CHALLENGES TO Al IN PM SCREENING
Establishing Clear, Unified Definitions of PM and MM in
Al-Based Studies

One of the major challenges with Al-driven detection
of PM and MM is inconsistency in their definitions. In
the previously mentioned systematic review and meta-
analysis, 17 studies were included in the systematic
review, and only eight explicitly stated the use of the
META-PM classification for MM identification, while
the remaining studies did not clarify which classification
system was applied.” This inconsistency complicates direct
comparisons between models, as variations in diagnostic
criteria can lead to significant differences in reported
performance. Additionally, the lack of standardized
definitions limits model generalization across diverse
datasets and clinical settings. Future research should focus
on establishing unified diagnostic criteria and standardized
image labeling frameworks to enhance the reliability and
applicability of Al models.

Evaluating DL Algorithms in Diverse, Real-World Settings

Despite the increasing availability of publicly annotated
datasets for PM (eg, the Pathologic Myopia Challenge
dataset and the Singapore Epidemiology of Eye Diseases
study dataset),’?! developing robust DL models for PM and
MM diagnosis remains challenging. Variations in medical
systems across different regions result in differences in the
prevalence of PM and MM subtypes within study cohorts,
affecting model performance and generalizability.

Recently, Qian et al introduced a publicly available dataset
for MM diagnosis as part of the Myopic Maculopathy
Analysis Challenge.? This dataset comprised 2,306 fundus
images for MM classification, with seven teams participating
in the competition. However, all fundus images were exclu-
sively sourced from Chinese patients, which may limit the
model’s generalizability to other populations. Future research
should expand datasets to include multiethnic populations
and evaluate model performance in diverse clinical environ-
ments to ensure real-world applicability.

Incorporating Multimodal Imaging

While the META-PM classification provides a standard-
ized framework for identifying various stages of MM, it
is solely based on fundus photographs, which presents
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Scan the QR code to view this article online, which includes a
schematic that illustrates the META-PM classification system
used for MM and

PM diagnosis, the
development pipeline
of Al-DL algorithms, and
the key challenges to
clinical translation.
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potential diagnostic limitations. Fundus pigmentation
variations among racial and ethnic groups can affect
image interpretation, and other critical myopic macular
pathologies, such as myopic traction maculopathy and
dome-shaped macula, are not included. To address these
gaps, an OCT-based classification has been proposed.??

Recent studies have demonstrated that DL models based
on OCT images can reliably detect PM and its complica-
tions, including MNV, dome-shaped macula, and tractional
changes such as retinoschisis, macular hole, and retinal
detachment.2*?” However, compared with fundus photog-
raphy-based models, OCT-based Al research remains rela-
tively limited. One major challenge is the lack of uniform
diagnostic criteria and large annotated datasets, likely due
to the complexity of PM and its diverse manifestations.
Moreover, variations in OCT imaging systems used in real-
world clinical practice pose additional barriers to the wide-
spread implementation of these Al algorithms.

Despite the success of multimodal DL approaches
in conditions such as glaucoma and AMD,%3? their
application in PM remains underexplored. Future research
should focus on integrating fundus photography, OCT,
and other imaging modalities to enhance diagnostic
accuracy and provide a more comprehensive assessment of
PM-related complications.

CLINICAL TRANSLATION

In addition to challenges related to Al model develop-
ment and evaluation, systemic barriers remain in the
clinical translation of Al-based DL algorithms for PM and
MM detection. First, the “black box” nature of many Al
algorithms continues to hinder trust and acceptance
among clinicians. This challenge has given rise to the field
of explainable Al, which focuses on developing models
that not only achieve high accuracy, but also provide
transparent, interpretable reasoning behind their outputs,



thereby enhancing clinical trust and usability.>

The lack of rigorous clinical trials also limits our under-
standing of the true clinical value of these models—are
they safe, effective, affordable, and relevant in the dynamic
health care environment?*> While many algorithms demon-
strate high diagnostic performance in research settings, few
have demonstrated meaningful clinical effect in real-world
practice.>® Furthermore, the seamless integration of Al
tools into existing clinical workflows remains an obstacle.
For example, it is unclear whether current PM and MM
detection models are better suited for use in primary eye
care settings or specialized settings, such as retinal clinics
or high myopia centers. Determining the most appropriate
clinical environment is essential for maximizing their utility
and minimizing workflow disruption.

ADDRESSING THESE CHALLENGES

Gunasekeran et al proposed a comprehensive framework
known as the “5Ps: People, Policies, Processes, Platforms,
and Products.”¥” This framework outlines essential elements
for the successful, large-scale deployment of medical Al
solutions, such as those implemented in national diabetic
retinopathy screening programs. Applying a similar
framework to Al-based MM and PM detection systems
may facilitate more effective, scalable, and sustainable
integration into health care systems. m

Disclosure: The authors used ChatGPT in the original
drafting of this article solely for language editing and grammar
improvement. No content generation, data analysis, or
interpretation was performed by Al.
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