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P
athologic myopia (PM) is a leading cause of irre-
versible blindness in East Asia and a growing 
global public health concern.1-6 According to the 
International Myopia Institute, PM is characterized 
by excessive axial elongation associated with myopia, 

resulting in structural changes in the posterior segment of 
the eye, such as posterior staphyloma, myopic maculopathy 
(MM), and high myopia-associated optic neuropathy.7

To standardize the diagnosis of MM, a classification 
system known as the META-analysis for pathologic myopia 
(META-PM) was introduced in 2015 based on fundus 
photographs.8 This system categorizes MM into five grades 
(0 to 4) according to the severity of atrophic changes, with 
three additional “plus” features: lacquer cracks, myopic 
macular neovascularization (MNV), and Fuchs spot. Based 
on this classification, PM is defined as myopic eyes with 
MM equal to or more severe than diffuse atrophy and/or 
eyes with posterior staphyloma.9

Deep learning (DL) architectures—particularly convo-
lutional neural networks (CNNs)—have demonstrated 
remarkable efficiency in detecting ocular diseases from 
fundus photographs, including the diagnosis and classifica-
tion of PM.10,11 AI-powered DL systems not only offer auto-
mated classification, but also have the potential to enhance 
diagnostic efficiency, making them valuable tools for large-
scale screening and clinical decision making (Figure 1).12

 F U N D U S-BA S E D P M D E T EC T I O N U S I N G A I 
As a cost-effective and noninvasive imaging modality 

widely used in routine eye care, fundus photography 

remains the primary choice for AI-driven PM detection. Its 
accessibility has facilitated the construction of large-scale 
datasets, enabling the development of robust CNN archi-
tectures. Additionally, the META-PM classification based on 
fundus imaging aligns well with AI model labeling require-
ments, further supporting automated PM detection.

A recent meta-analysis of 11 studies involving 
165,787 eyes reported high diagnostic performance of 
AI-based tools in detecting MM and PM from fundus 
images, with an area under the summary receiver operator 
curve of 0.9905 and a pooled sensitivity of 0.959.13 Several 
representative studies illustrate the evolution of this 
field—from simple binary classification (ie, MM vs non-
MM) to more detailed grading across all five META-PM 
categories. In 2021, a retrospective multicohort study using 
226,686 fundus images from nine multiethnic cohorts 
across six regions developed DL algorithms for classifying 
high myopia and MM.12 In the same year, two studies 
demonstrated the ability of DL models to classify MM 
across categories 0 to 4 and detect “plus” lesions.14,15

The application of advanced computer vision techniques 
has enhanced the performance and efficiency of AI-based 
MM and PM detection. These innovations aim to reduce 
reliance on extensive manual annotations and explore the 
potential for fully automated diagnosis.

For example, Sun et al introduced a module that used 
the information of tessellated fundus and brightest image 
regions to assist in lesion localization using coarse-labeled 
images.16 Yao et al developed DeepGraFT, a classification-
and-segmentation co-decision model that first applies 
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image masking to isolate the region of interest.17 This was 
followed by a binary classification for each MM category 
by Zhang et al that uses a technique known as 
self-supervised learning,18 which refers to the development 
of generalist models capable of adapting to various 
downstream tasks with significantly less annotated data, 
demonstrating promising performance in automated MM 
diagnosis and grading.

 C H A L L E N G E S TO A I  I N P M S C R E E N I N G 
Establishing Clear, Unified Definitions of PM and MM in 
AI-Based Studies

One of the major challenges with AI-driven detection 
of PM and MM is inconsistency in their definitions. In 
the previously mentioned systematic review and meta-
analysis, 17 studies were included in the systematic 
review, and only eight explicitly stated the use of the 
META-PM classification for MM identification, while 
the remaining studies did not clarify which classification 
system was applied.13 This inconsistency complicates direct 
comparisons between models, as variations in diagnostic 
criteria can lead to significant differences in reported 
performance. Additionally, the lack of standardized 
definitions limits model generalization across diverse 
datasets and clinical settings. Future research should focus 
on establishing unified diagnostic criteria and standardized 
image labeling frameworks to enhance the reliability and 
applicability of AI models.

Evaluating DL Algorithms in Diverse, Real-World Settings
Despite the increasing availability of publicly annotated 

datasets for PM (eg, the Pathologic Myopia Challenge 
dataset and the Singapore Epidemiology of Eye Diseases 
study dataset),19-21 developing robust DL models for PM and 
MM diagnosis remains challenging. Variations in medical 
systems across different regions result in differences in the 
prevalence of PM and MM subtypes within study cohorts, 
affecting model performance and generalizability.

Recently, Qian et al introduced a publicly available dataset 
for MM diagnosis as part of the Myopic Maculopathy 
Analysis Challenge.22 This dataset comprised 2,306 fundus 
images for MM classification, with seven teams participating 
in the competition. However, all fundus images were exclu-
sively sourced from Chinese patients, which may limit the 
model’s generalizability to other populations. Future research 
should expand datasets to include multiethnic populations 
and evaluate model performance in diverse clinical environ-
ments to ensure real-world applicability.

Incorporating Multimodal Imaging
While the META-PM classification provides a standard-

ized framework for identifying various stages of MM, it 
is solely based on fundus photographs, which presents 

potential diagnostic limitations. Fundus pigmentation 
variations among racial and ethnic groups can affect 
image interpretation, and other critical myopic macular 
pathologies, such as myopic traction maculopathy and 
dome-shaped macula, are not included. To address these 
gaps, an OCT-based classification has been proposed.23

Recent studies have demonstrated that DL models based 
on OCT images can reliably detect PM and its complica-
tions, including MNV, dome-shaped macula, and tractional 
changes such as retinoschisis, macular hole, and retinal 
detachment.24-27 However, compared with fundus photog-
raphy-based models, OCT-based AI research remains rela-
tively limited. One major challenge is the lack of uniform 
diagnostic criteria and large annotated datasets, likely due 
to the complexity of PM and its diverse manifestations. 
Moreover, variations in OCT imaging systems used in real-
world clinical practice pose additional barriers to the wide-
spread implementation of these AI algorithms.

Despite the success of multimodal DL approaches 
in conditions such as glaucoma and AMD,28-33 their 
application in PM remains underexplored. Future research 
should focus on integrating fundus photography, OCT, 
and other imaging modalities to enhance diagnostic 
accuracy and provide a more comprehensive assessment of 
PM-related complications.

 C L I N I C A L T R A N S L AT I O N 
In addition to challenges related to AI model develop-

ment and evaluation, systemic barriers remain in the 
clinical translation of AI-based DL algorithms for PM and 
MM detection. First, the “black box” nature of many AI 
algorithms continues to hinder trust and acceptance 
among clinicians. This challenge has given rise to the field 
of explainable AI, which focuses on developing models 
that not only achieve high accuracy, but also provide 
transparent, interpretable reasoning behind their outputs, 
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thereby enhancing clinical trust and usability.34

The lack of rigorous clinical trials also limits our under-
standing of the true clinical value of these models—are 
they safe, effective, affordable, and relevant in the dynamic 
health care environment?35 While many algorithms demon-
strate high diagnostic performance in research settings, few 
have demonstrated meaningful clinical effect in real-world 
practice.36 Furthermore, the seamless integration of AI 
tools into existing clinical workflows remains an obstacle. 
For example, it is unclear whether current PM and MM 
detection models are better suited for use in primary eye 
care settings or specialized settings, such as retinal clinics 
or high myopia centers. Determining the most appropriate 
clinical environment is essential for maximizing their utility 
and minimizing workflow disruption.

 A D D R E S S I N G T H E S E C H A L L E N G E S 
Gunasekeran et al proposed a comprehensive framework 

known as the “5Ps: People, Policies, Processes, Platforms, 
and Products.”37 This framework outlines essential elements 
for the successful, large-scale deployment of medical AI 
solutions, such as those implemented in national diabetic 
retinopathy screening programs. Applying a similar 
framework to AI-based MM and PM detection systems 
may facilitate more effective, scalable, and sustainable 
integration into health care systems.  n
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drafting of this article solely for language editing and grammar 
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