GLP-1 RECEP AGONISTS A

Researchers are working to understand the effects of these popular new therapies on ocular structures.

By Suraj Bala, BS; Julia H. Joo, MD; and Aleksandra V. Rachitskaya, MD

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) promote physiologic glucosedependent insulin

release.1 Originally FDA-approved for type 2 diabetes, GLP-1 RAs also lead to sustained weight loss and have revolutionized diabetes and obesity management.²³ Furthermore, several cardiovascular outcome trials (CVOT) suggest GLP-1 RAs confer a mortality benefit, with significant reductions in major adverse cardiovascular events, all-cause mortality, heart failure severity, and worsening kidney function.4

GLP-1 RAs also exert antiinflammatory and neuroprotective benefits on the central nervous system, retina, and other ocular structures, 5-8 and research shows reduced risk of neurodegenerative diseases such as Alzheimer and Parkinson dementia.9-12 Many studies have investigated the role of GLP-1 RAs on the risk of ophthalmic diseases, including diabetic retinopathy (DR), glaucoma, AMD, idiopathic intracranial hypertension (IIH), and nonarteritic anterior ischemic optic neuropathy (NAION). Here, we provide an overview of the effect of GLP-1 RAs on ophthalmic diseases.

DIABETIC RETINOPATHY

The relationship between DR and GLP-1 RAs remains controversial. Concern was initially raised by the findings of the SUSTAIN-6 CVOT that suggested the risk of DR complications was elevated in patients using semaglutide compared with placebo (3.0% vs 1.8%, P = .02). Two metaanalyses of other GLP-1 RA CVOTs found that GLP-1 RAs

AT A GLANCE

- ► Originally FDA-approved for type 2 diabetes, glucagonlike peptide-1 receptor agonists (GLP-1 RAs) also lead to sustained weight loss and have revolutionized diabetes and obesity management.
- Many studies have investigated the relationship between GLP-1 RAs and ophthalmic diseases, including diabetic retinopathy, glaucoma, AMD, idiopathic intracranial hypertension, and nonarteritic anterior ischemic optic neuropathy.

NEW FRONTIERS IN DIABETES CARE

were associated with greater rates of DR progression, but both studies found that the effect was driven by the extent of hemoglobin A1c reduction, rather than the medications themselves. 14,15 Another meta-analysis of 93 clinical trials showed that GLP-1 RAs increased the risk of early-stage DR compared with placebo, with this effect being driven by albiglutide in particular. 16

A challenge of comparing data between CVOTs is the inconsistency in the protocols for accurately detecting retinal changes. Not all studies required dilated fundus examinations or retinal imaging, and they differed in inclusion criteria that would affect risk for disease progression. For example, while the SUSTAIN-6 study included patients with proliferative DR (PDR) and diabetic macular edema (DME), other CVOTs, such as PIONEER 6, did not. 17

Moreover, the effects of GLP-1 RAs on DR have been explored in many retrospective large database studies, which have also yielded conflicting results. Some national electronic health record (EHR) database studies showed an elevated risk of DR development or progression. 18,19 Two such studies received letters to the editor with concerns that either the study design was not rigorous enough or the dataset used was not appropriate for ophthalmic questions.^{20,21}

Others showed a protective effect of GLP-1 RAs on DR progression. Zheng et al showed that GLP-1 RA use was associated with a lower risk of DR in 2,390 patients in a national Swedish registry using both observational and genetic data.²² Several other studies showed that there was no significant relationship between GLP-1 RAs and DR worsening, including one study by Joo et al in which manual review of the data was conducted to ensure accuracy in the ICD coding used to determine outcomes.²³⁻²⁵

To resolve this confusion, the prospective FOCUS trial was initiated in 2019. The trial is studying the effects of semaglutide on DR complications in 1,500 patients with type 2 diabetes and is estimated to be completed in 2027.²⁶

GLAUCOMA

Numerous studies have assessed the relationship between GLP-1 RAs and glaucoma, and most have shown that GLP-1 RAs confer a protective effect. For example, Muayad et al compared 61,998 patients with diabetes using GLP-1 RAs with metformin users in the US Collaborative Network of the TriNetX EHR database to calculate the risk of developing ocular hypertension or primary open-angle glaucoma, requiring topical glaucoma medication, or requiring laser trabeculoplasty.²⁷ At the 1-, 2-, and 3-year timepoints, they found that the GLP-1 RA cohort had a significantly lower risk of all three outcomes compared with metformin users.²⁷

In a case-control study, Niazi et al compared 1,737 patients with glaucoma with 8,685 controls without glaucoma.²⁸ They found that GLP-1 RA use was associated with a lower risk of incident glaucoma (hazard ratio [HR] = .81), with

the risk decreasing even further when GLP-1 RAs were used for longer than 3 years (HR = .71). However, a cohort study using TriNetX found that sodium-glucose co-transporter 2 inhibitors also significantly decreased the risk of new glaucoma diagnosis compared with GLP-1 RAs (HR = .932).²⁹

In a systematic review and meta-analysis pooling these and other studies, Amaral et al found that the risk of glaucoma development was lower in patients taking GLP-1 RAs (HR = .71) compared with controls.³⁰ These clinical findings are supported by similar findings in basic science studies.³¹

AMD

Only two studies thus far have reported on the association between GLP-1 RAs and AMD. Allan et al used the TriNetX EHR platform to evaluate the risk of developing dry and wet AMD compared with controls in 9,669 patients taking GLP-1 RA medications.³² Included patients were matched for age, sex, race and ethnicity, cardiovascular diseases, DR severity (including PDR and DME status), history of tobacco use, body mass index, and hemoglobin A1c percentage. The authors found that GLP-1 RA use was associated with a significantly decreased risk of developing dry AMD compared with patients taking metformin (HR = .68), insulin (HR = .72), and statins (HR = .70). Additionally, GLP-1 RA use was protective against wet AMD but only when comparing patients taking insulin (HR = .62) and statins (HR = .69).³²

Shor et al used a nationwide Canadian EHR database to compare 46,334 patients taking GLP-1 RAs with 92,668 controls over a follow-up period of 6 months to 3 years.³³ They found that the HR for developing wet AMD was 2.21 in GLP-1 RA users compared with controls. However, this study had limited duration of drug use and a lack of controls in the regression model for wet AMD risk factors, such as baseline PDR and DME status, smoking history, hemoglobin A1c, and history of dry AMD. Additional research with rigorous study design is needed to clarify these relationships.

Several studies have explored the effect of GLP-1 RA use on IIH. A phase 2 trial studied exenatide usage on intracranial pressure (ICP) in patients with IIH over 12 weeks.³⁴ In the double-blind study, seven patients received subcutaneous exenatide twice daily and eight patients received placebo. By the end of the study, the ICP in exenatide users decreased by 5.6 ± 3.0 cmCSF compared with controls (P = .058).

Another study investigated the effect of GLP-1 RAs on IIH symptoms, such as monthly headache days and visual outcomes.³⁵ While visual parameters such as field defects and visual acuity were not significantly different between groups, GLP-1 RA users (n = 7) reported fewer daily headaches (P = .02) compared with controls (n = 8). While these results are promising, the sample sizes are very small, and further studies are warranted to support these findings.

NEW FRONTIERS IN DIABETES CARE

NAION

The effect of GLP-1 RAs on NAION is inconsistent across studies. In a retrospective cohort study of 16,827 patients in a single-center neuroophthalmology clinic, Hathaway et al found that semaglutide use was significantly associated with an increased incidence of NAION among patients with diabetes (HR = 4.28).36 The risk was further elevated in patients without diabetes taking semaglutide for weight loss (HR = 7.64, P < .001). These results may have limited generalizability due to bias introduced by the study's design, including the treatment setting (ie, a neuroophthalmology clinic) and potential worse baseline health in patients taking semaglutide compared with matched controls.³⁷

Several studies using large databases have attempted to replicate these results. Simonsen et al used the Norwegian and Danish national health registries and found an increased risk of NAION development with semaglutide initiation (HR = 2.81).38 Grauslund et al identified all patients with diabetes in Denmark's national health registry and found that semaglutide was an independent predictor of incident NAION (HR = 2.19).³⁹ However, this study did not control for relevant risk factors such as smoking, blood pressure, and body mass index. Hsu et al used the TriNetX platform to study the association between semaglutide use and the incidence of NAION and found that it was associated with an increased risk in patients with diabetes at the 2-, 3-, and 4-year timepoints but not within 1 year of GLP-1 RA initiation.⁴⁰ Due to the deidentified nature of these databases, however, none of these large-scale cohort studies could account for treatment adherence and duration of exposure, and they lacked access to ophthalmic examination data.41

Additionally, in retrospective cohort analyses also using the TriNetX database, both Chou et al and Abbass et al found no association between semaglutide use and risk of NAION. 42,43 Of note, Abbass et al did not control for hemoglobin A1c, lipid levels, or history of cataract surgery, which could introduce bias. 44,45 Using the FDA Sentinel System, Maro et al found that the incidence of NAION was not increased within 6 months of semaglutide initiation.⁴⁶ Finally, Klonoff et al, using the Arcadia patient registry, also found no significant increase in NAION risk in patients taking semaglutide.⁴⁷ In June 2025, the European Medicines Agency recommended cessation of semaglutide use if a patient is newly diagnosed with NAION. However, the AAO and the North American Neuro-Ophthalmology Society do not support this blanket recommendation. Instead, they advise patients who develop NAION to engage in shared decision making with their providers about whether to discontinue the drug based on individual risks. Their reasoning includes the potentially significant systemic side effects of stopping semaglutide and the lack of evidence for a causative link between GLP-1 RAs and NAION.⁴⁸

MORE INFORMATION IS NEEDED

The newfound potential effects of GLP-1 RAs across numerous ophthalmic diseases have sparked excitement, concern, and confusion among ophthalmologists and patients alike. Many of these studies are from large databases, which are powerful tools in elucidating patterns on a population level, but can also be misleading due to their immense statistical power. They could produce findings that may be due to the bias inherent in retrospective studies. For example, ICD diagnosis codes for ophthalmic diseases can be unreliable and inaccurate, 49,50 particularly in national datasets in which manual validation of data is not possible.

Consequently, caution should be exercised when interpreting findings from large EHR studies. Future large database studies should provide increased methodologic transparency to support reproducible results.⁵¹ Additionally, studies incorporating imaging data, visual function data, and prospective trials are warranted to further characterize the true effect of GLP-1 RA use on ocular diseases.

- 1. Shah M, Vella A. Effects of GLP-1 on appetite and weight. Rev Endocr Metab Disord. 2014;15(3):181-187.
- 2. Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021:384(11):989-1002.
- 3. Trujillo JM, Nuffer W, Ellis SL. GLP-1 receptor agonists: a review of head-to-head clinical studies. Ther Adv Endocrinol Metab. 2015;6(1):19-28
- 4. Sattar N, Lee MMY, Kristensen SL, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021;9(10):653-662. 5. Yusta B, Baggio LL, Estall JL, et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 2006:4(5):391-406.
- 6. van Bloemendaal L, Veltman DJ, Ten Kulve JS, et al. Brain reward-system activation in response to anticipation and consumption of palatable food is altered by glucagon-like peptide-1 receptor activation in humans. Diabetes Obes Metab. 2015;17(9):878-886. 7. Alharbi SH. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications. Ther Adv Endocrinol Metab. 2024;15:20420188231222367.
- 8. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131-2157.
- 9. Oezer K, Kolibabka M, Gassenhuber J, et al. The effect of GLP-1 receptor agonist lixisenatide on experimental diabetic retinopathy. Acta Diabetol. 2023;60(11):1551-1565.
- 10. Ramos H, Bogdanov P, Sampedro J, Huerta J, Simó R, Hernández C. Beneficial effects of glucagon-like peptide-1 (GLP-1) in diabetes-induced retinal abnormalities: involvement of oxidative stress. Antioxidants (Basel). 2020;9(9):846.
- 11. Wei L, Mo W, Lan S, et al. GLP-1 RA improves diabetic retinopathy by protecting the blood-retinal barrier through GLP-1R-ROCKp-MLC signaling pathway. J Diabetes Res. 2022;2022:1861940.
- 12. Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72-130.
- 13. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. New Engl J Med. 2016:375(19):1834-1844
- 14. Vilsbøll T, Bain SC, Leiter LA, et al. Semaglutide, reduction in glycated haemoglobin and the risk of diabetic retinopathy. Diabetes Obes Metab. 2018;20(4):889-897.
- 15. Bethel MA, Diaz R, Castellana N, Bhattacharya I, Gerstein HC, Lakshmanan MC. HbA1c change and diabetic retinopathy during GLP-1 receptor agonist cardiovascular outcome trials: a meta-analysis and meta-regression. Diabetes Care. 2021;44(1):290-296. 16. Kapoor I, Sarvepalli SM, D'Alessio D, Grewal DS, Hadziahmetovic M. GLP-1 receptor agonists and diabetic retinopathy: A metaanalysis of randomized clinical trials. Surv Ophthalmol. 2023;68(6):1071-1083.
- 17. Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. New Engl J Med. 2019;381(9):841-851.
- 18. Wai KM, Mishra K, Koo E, et al. Impact of GLP-1 agonists and SGLT-2 inhibitors on diabetic retinopathy progression: an aggregated electronic health record data study. Am J Ophtholmol. 2024;265:39-47.
- 19. Lin TY, Kang EYC, Shao SC, et al. Risk of diabetic retinopathy between sodium-glucose cotransporter-2 inhibitors and glucagonlike peptide-1 receptor agonists. Diabetes Metab J. 2023;47(3):394-404.
- 20. Ko J, Moon SJ. Risk of diabetic retinopathy between sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists (Diabetes Metab J 2023;47:394-404). Diabetes Metab J. 2023;47(4):571-572.
- 21. Lum F. Comment on impact of GLP-1 agonists and SGLT-2 inhibitors on diabetic retinopathy progression: an aggregated electronic health record study. Am J Ophthalmol. 2024;268:416.
- 22. Zheng D, Li N, Hou R, et al. Glucagon-like peptide-1 receptor agonists and diabetic retinopathy: nationwide cohort and Mendelian randomization studies. BMC Med. 2023;21(1):40.
- 23. Joo JH, Sharma N, Shaia J, et al. The effect of glucagon-like peptide-1 receptor agonists on diabetic retinopathy at a tertiary care center. Ophthalmol Sci. 2024;4(6):100547.
- 24. Tauqeer Z, Bracha P, Hua P, Yu Y, Cui QN, VanderBeek BL. Glucagon-like peptide-1 receptor agonists are not associated with an increased risk of progressing to vision-threatening diabetic retinopathy. Ophthalmic Epidemiol. 2025;32(4):390-393.
- 25. Ueda P, Pasternak B, Eliasson B, et al. Glucagon-like peptide 1 receptor agonists and risk of diabetic retinopathy complications: cohort study in nationwide registers from two countries. Diabetes Care. 2019;42(6):e92-e94.
- 26. Long-term effects of semaglutide on diabetic retinopathy in subjects with type 2 diabetes, Accessed June 21, 2025, clinicaltrials.gov/study/NCT03811561
- 27. Muayad J, Loya A, Hussain ZS, et al. Comparative effects of glucagon-like peptide 1 receptor agonists and metformin on glaucoma risk in patients with type 2 diabetes. Ophthalmology. 2025;132(3):271-279.

NEW FRONTIERS IN DIABETES CARE

28. Niazi S, Gnesin F, Thein AS, et al. Association between glucagon-like peptide-1 receptor agonists and the risk of glaucoma in individuals with type 2 diabetes. Ophtholmology. 2024;131(9):1056-1063.

29. Eng K, Zebardast N, Boland MV, et al. Sodium-glucose cotransporter 2 inhibitors for the primary prevention of glaucoma in patients with type 2 diabetes: a target trial emulation. Am J Ophtholmol. 2025;271:286-298.

30. Amaral DC, Guedes J, Cruz MRB, et al. GLP-1 receptor agonists use and incidence of glaucoma: a systematic review and meta-analysis. Am J Ophtholmol. 2025;271:488-497.

31. Lawrence ECN, Guo M, Schwartz TD, et al. Topical and systemic GLP-1R agonist administration both rescue retinal ganglion cells in hypertensive glaucoma. Front Cell Neurosci. 2023;17:1156829.

32. Allan KC, Joo JH, Kim S, et al. Glucagon-like peptide-1 receptor agonist impact on chronic ocular disease including age-related macular degeneration. Ophtholmology. 2025;132(7):748-757.

33. Shor R, Mihalache A, Noori A, et al. Glucagon-like peptide-1 receptor agonists and risk of neovascular age-related macular degeneration (published online ahead of print June 5, 2025). JAMA Ophtholmol.

34. Mitchell JL, Lyons HS, Walker JK, et al. The effect of GLP-1RA exenatide on idiopathic intracranial hypertension: a randomized clinical trial. Brain. 2023;146(5):1821-1830.

35. Krajnc N, Itariu B, Macher S, et al. Treatment with GLP-1 receptor agonists is associated with significant weight loss and favorable headache outcomes in idiopathic intracranial hypertension. *J Headache Poin*. 2023;24(1):89.

36. Hathaway JT, Shah MP, Hathaway DB, et al. Risk of nonarteritic anterior ischemic optic neuropathy in patients prescribed semaglutide. *JAMA Ophtholmol*. 2024;142(8):732-739.

37. Amini A, Hamann S, Larsen M. Semaglutide and non-arteritic anterior ischaemic optic neuropathy: Review and interpretation of reported association [published online ahead of print March 8, 2025]. Acta Ophtholmol.

38. Simonsen E, Lund LC, Ernst MT, et al. Use of semaglutide and risk of non-arteritic anterior ischemic optic neuropathy: A Danish-Norwegian cohort study. Diabetes Obes Metab. 2025;27(6):3094-3103.

 Grauslund J, Taha AA, Molander LD, et al. Once-weekly semaglutide doubles the five-year risk of nonarteritic anterior ischemic optic neuropathy in a Danish cohort of 424,152 persons with type 2 diabetes. Int J Retino Vitreous. 2024;10(1):97.

40. Hsu AY, Kuo HT, Wang YH, et al. Semaglutide and nonarteritic anterior ischemic optic neuropathy risk among patients with diabetes. JAMA Ophtholmol. 2025;143(5):400-407.

41. Malerbi FK, Bertoluci MC. Semaglutide, type 2 diabetes, and the risk of nonarteritic anterior ischemic optic neuropathy. International Journal of Retina and Vitreous. 2025;11(1):8.

 Chou CC, Pan SY, Sheen YJ, et al. Association between semaglutide and Nonarteritic anterior ischemic optic neuropathy: a multinational population-based study. Ophthalmology. 2025;132(4):381-388.

43. Abbass NJ, Nahlawi R, Shaia JK, et al. The effect of semaglutide and GLP-1 RAs on risk of nonarteritic anterior ischemic optic neuropathy. Am J Ophtholmol. 2025;274:24-31.

44. Abbass NJ, Allan KC, Talcott KE, Singh RP. Reply to comment on the effect of semaglutide and GLP-1 RAs on risk of nonarteritic anterior ischemic optic neuropathy [published online ahead of print June 20, 2025]. Am J Ophtholmol.

45. Hsu AY, Lin CJ, Shao YC, Tsai YY, Wang YH, Wei JCC. Comment on: the effect of semaglutide and GLP-1 RAs on risk of nonarteritic anterior ischemic optic neuropathy [published online ahead of print June 20, 2025], Am J Ophtholmol.

 Maro JC, Platt R, Toh S. considerations regarding association of semaglutide and nonarteritic anterior ischemic optic neuropathy. JAMA Ophtholmol. 2024;142(12):1176.

47. Klonoff DC, Hui G, Gombar S. Real-world evidence assessment of the risk of nonarteritic anterior ischemic optic neuropathy in patients prescribed semaglutide. *J Diobetes Sci Technol*. 2024;18(6):1517-1518.

48. Should You Stop Taking GLP-1 Drugs Like Ozempic if You Experience Vision Loss? Nation's Ophthalmologists Respond to European Agency's New Recommendation. AAO. July 7, 2025. Accessed July 15, 2025. bit.ly/3IHDEm6

49. Cai CX, Michalak SM, Stinnett SS, Muir KW, Fekrat S, Borkar DS. Effect of ICD-9 to ICD-10 transition on accuracy of codes for stage of diabetic retinopathy and related complications: results from the CDDER Study. Ophtholimol Retina. 2021;5(4):374-380.
50. Chen JS, Copado IA, Vallejos C, et al. Variations in electronic health record-based definitions of diabetic retinopathy cohorts: a literature review and quantitative analysis. Ophtholimol Sci. 2024;4(4):100468.

51. Cai CX, Hribar M, Nishimura A. Conflicting results—need for more transparent and reproducible research. JAMA Ophtholmol. 2025;143(5):408-409.

SURAJ BALA, BS

- Medical Student, Hackensack Meridian School of Medicine, Nutley, New Jersey
- suraj.bala@richmond.edu
- Financial disclosure: None

JULIA H. JOO, MD

- PGY-1 Ophthalmology Resident, Cole Eye Institute, Cleveland Clinic, Cleveland
- J00J5@ccf.org
- Financial disclosure: None

ALEKSANDRA V. RACHITSKAYA. MD

- Vitreoretinal Surgery Physician, Cole Eye Institute, Cleveland Clinic, Cleveland
- Associate Professor of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cleveland
- Editorial Advisory Board Member, Retina Today
- rachita@ccf.org
- Financial disclosure: Consultant (4DMT, Abbvie, Alcon, Apellis, Astellas, Boehringer Ingelheim, Carl Zeiss Meditec, EyePoint, Genentech/Roche, Ocular Therapeutix, Regeneron, Samsara); Scientific Advisory Board (Samsara); Speakers' Bureau (Apellis, Astellas, Genentech/Roche), Regeneron); Research Grants (Apellis, Beacon Therapeutics, DRCR Retina Network, Genentech/Roche, Regeneron)