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Artificial intelligence (AI) screening 
algorithms are a promising solu-
tion to the growing global diabetic 
retinopathy (DR) screening burden. 
Many AI algorithms have been shown 
to perform at or above the level of 
human experts on DR classification 
tasks when evaluated on their internal 
datasets.1-4 However, these algo-
rithms may underperform on larger, 

external validation datasets due to a lack of generalizability, 
overfitting, or underspecificity.5-7

Discrepancies between internal and external validation 
performance can be concerning, given that many of these 
algorithms are already commercially available; two algo-
rithms (IDx-DR [Digital Diagnostics] and EyeArt [Eyenuk]) 
have FDA approval.3,8

Here, we share our findings after validating seven com-
mercially available DR screening algorithms on a large-scale 
dataset collected from two Veterans Affairs (VA) hospitals.

 H E A D-T O-H E A D V A L I D A T I O N 
Our multicenter, noninterventional, head-to-head 

device validation study included seven commercially 
available AI-based DR screening algorithms from five 
participating companies.9 The validation dataset consisted of 
311,604 fundus photographs from 23,724 veterans from the 
Seattle VA Puget Sound Health Care System (HCS) and the 
Atlanta VA HCS. In addition, a randomly sampled subset of 
7,379 images were regraded using double-masked arbitration. 

Non-referable DR was defined as no DR (International 
Clinical Diabetic Retinopathy Severity Scale [ICDR] of 0), 
and referable DR was defined as the presence of any DR 
(ICDR 1-4) by the VA standard.9

The results showed substantial differences in overall 
performance between the algorithms. Using the original 

VA teleretinal grades as the reference standard, algorithm 
sensitivity ranged from 50.98% to 85.90%, specificity from 
60.42% to 83.69%, negative predictive value from 82.72% to 
93.69%, and positive predictive value from 36.46% to 50.80%. 
Overall, the algorithms achieved higher negative predictive 
values using the Atlanta data set (90.71% to 98.05%) 
compared with the Seattle data set (77.57% to 90.66%). In 
contrast, the positive predictive values ranged from 24.80% 
to 39.07% in the Atlanta data set, which was lower than the 
Seattle data set (42.04% to 62.92%).9

When the arbitrated grades from the 7,379 regraded 
images were used as the new reference standard, most 
algorithms performed worse in terms of both sensitivity 
and specificity compared with the VA teleretinal graders. 
While the VA teleretinal graders achieved an overall 
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sensitivity of 82.22% and specificity of 84.36%, only one 
algorithm approached a similar level of performance in both 
sensitivity (80.47%) and specificity (81.28%). Two algorithms 
achieved higher sensitivities than the VA teleretinal graders 
(92.71% and 92.71%) but were also statistically less specific. 
Only one algorithm achieved higher specificity (90.00%), 
at the cost of a statistically lower sensitivity than the VA 
teleretinal graders.9 

 R E F E R R A B L E T H R E S H O L D S 
When we performed a sensitivity analysis for different 

thresholds of disease severity, we found that, although most 
algorithms had higher sensitivities when the threshold was 
raised to moderate DR or worse, none of the algorithms 
were better than human graders in identifying referable 
disease when analyzed by DR severity. When the referrable 
threshold was raised to severe DR or worse, the sensitivity 
of one algorithm only reached 74.42%. Thus, regional- and 
site-specific differences in the thresholds for referrable DR 
may be an important factor that can affect downstream 
model performance.9

 O T H E R V A L I D A T I O N W O R K S 
In a separate validation study, Tufail et al assessed the 

performance of three DR screening algorithms using 
102,856 images from 20,258 patients.6 The authors found 
that two algorithms achieved acceptable sensitivity for 
referable retinopathy (85% and 94%); however, both 
algorithms had low specificity, contributing to false positive 
rates of 47.7% and 80%, respectively. The third algorithm also 
classified all episodes as diseased or ungradable, resulting in a 
100% sensitivity rate but also a 100% false positive rate. 

Meanwhile, smaller studies validating individual 
DR screening algorithms have reported stronger results, 
with one study reporting a sensitivity of 100% and specificity 
of 82% when validated on 2,680 patients undergoing DR 
screening in Valencia, Spain.10 

Another DR screening algorithm that was validated on 
4,504 fundus images from five urban centers in Zambia 
showed clinically acceptable performance in detecting 
referable DR with sensitivity and specificity of 92.25% and 
89.04%, respectively.11 Still, single-algorithm studies are dif-
ficult to interpret, and multi-algorithm studies are better for 
direct head-to-head comparison of different algorithms.

 C L I N I C A L I M P L I C A T I O N S 
The performance of many AI-based DR screening algo-

rithms may differ significantly when being evaluated using 
large-scale external validation datasets. The discrepancy in 
performance highlights the issue of algorithm generalizability, 
or how well a model performs for all subsets of unseen data. 
Generalizability concerns often arise when the training and 
validation datasets are sufficiently different, which can be 

attributed to variations in image collection protocols, image 
quality, device manufacturers, or demographic factors. 

Our study demonstrated site-specific differences in algo-
rithm performance, and we hypothesized that differences 
in imaging protocols, disease prevalence, and patient demo-
graphics may be notable contributing factors.9 

As more automated screening algorithms are introduced, 
they should be validated on datasets that are representative 
of the population in which they are deployed. While our 
study was strengthened by the head-to-head comparison 
and a large real-world dataset, the VA population may not 
reflect the general population. 

Furthermore, a meta-analysis found that many AI-based DR 
screening algorithms often used the same datasets for training 
and external validation.12-16 While these datasets are typically 
graded by trained ophthalmologists, many exclude ungradable 
images, are limited in size, lack extensive demographic 
information, and may not capture the full underlying 
distribution of disease.5,12,17,18 This highlights the importance of 
conducting additional validation in diverse populations, as well 
as the need for prospective, interventional trials after clinical 
integration and regulatory approval. The goal is to ensure 
that automated screening algorithms can maintain adequate 
performance standards regardless of variables such as race, 
image quality, and coexisting disease. 

 H U R D L E S T O O V E R C O M E 
 Automated DR screening systems have shown potential 

in helping to alleviate the DR screening burden. However, 
many challenges still exist, and we must exercise caution 
when interpreting the performance of an algorithm that is 
trained and validated solely on internally curated datasets. 

Large-scale external validation studies, although 
challenging to conduct, serve as the best indicators for an 
algorithm’s true performance. Future work should aim to 
develop automated AI-based screening algorithms that are 
flexible, efficient, and able to demonstrate robust perfor-
mance on the populations in which they are deployed.  n  

CAN’T-MISS DISCLAIMER
Although automated diabetic retinopathy (DR) screening 
systems can greatly expand access, they do not replace 
routine eye examinations. Current commercial DR screening 
systems are approved only to diagnose referrable DR using 
specific devices and protocols. Sole reliance on automated 
screening systems may miss additional important features, 
such as undiagnosed glaucoma, macular degeneration, retinal 
detachments, or choroidal melanomas. DR screening systems 
should supplement traditional eye examinations to expand 
screening access, while also upholding a high standard of care. 
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