CLINICAL UTILITY OF OCT ANGIOGRAPHY FOR RETINAL AND CHOROIDAL VASCULAR DISEASES

In Part 2 of this two-part series, the authors continue to explore the pluses and minuses of OCTA.

BY KOOSHA RAMEZANI, MD; HAGAR KHALID, MD; LUÍSA S.M. MENDONÇA, MD; AND NADIA K. WAHEED, MD, MPH

n Part 1 of this two-part series, we summarized the clinical utility of OCT angiography (OCTA) in exudative and nonexudative AMD. In this report, we examine the usefulness of OCTA for other retinal and choroidal vascular diseases.

DIABETIC RETINOPATHY

OCTA can play a significant role in diagnosis and monitoring of diabetic retinopathy (DR; Figure 1). It can visualize microaneurysms and show reduced macular vessel density where detailed fundus examination fails to detect any signs of DR.¹ Nevertheless, only about half of the microaneurysms seen on fluorescein angiography (FA) are detected by OCTA, perhaps because of the limited ability of the latter modality to detect slow flow.2

FA, because of light scattering and limitations inherent to the technology, is unable to capture changes in the deep capillary plexus where some of the earliest changes of DR may occur.3 The depth resolution of OCTA, however, enables visualization of the capillary plexus. Additionally, OCTA can detect nonperfused areas and enlargement of the foveal avascular zone (FAZ; Figure 2).4

OCTA may also be useful for precisely detecting retinal neovascularization (NV) without obscuring the margins by leakage, as occurs with FA. The area of NV can be monitored as it changes in size after laser treatment or anti-VEGF therapy.3 However, the smaller field of view on OCTA compared with FA may limit its ability to investigate peripheral NV or nonperfusion in DR. To address this limi-

Figure 1. These are the FA (A) and the corresponding 6 x 6 mm OCTA en face images of the full retinal thickness slab (B) of an eye with proliferative diabetic retinopathy (PDR). Areas of nonperfusion can be seen with both technologies, but in greater detail on the OCTA image. FAZ margins are also better visualized with OCTA than with FA. The superonasal area of dye leakage captured on FA was not captured on the OCTA frame.

tation, it is possible to create widefield images by montaging multiple images.³ Some high-speed OCTA devices are capable of scanning larger areas. Although widefield OCTA offers a smaller field of view than that captured by ultrawidefield FA, OCTA provides more detailed visualization of vascular changes in a fast, noninvasive manner. 1,4,5

RETINAL VASCULAR OCCLUSION

Retinal vascular occlusions are common retinal disorders causing vision loss.⁶ Traditionally, FA has been used for the evaluation of disease severity, degree of ischemia, and extent of NV.7 Recently, widefield OCTA has been useful in evaluating the retinal vasculature with high sensitivity

Figure 2. The widefield en face OCTA (12 x 12 mm montage) of the superficial capillary plexus in a patient with PDR shows extensive areas of nonperfusion, irregular FAZ, and multiple areas of NV elsewhere (red arrows).

for early detection of nonperfusion and vasculature abnormalities (Figure 3).8-11

CENTRAL SEROUS CHORIORETINOPATHY

Choroidal NV is a known complication of central serous chorioretinopathy (CSCR) and can be a major cause of visual impairment.¹² Forming a definitive diagnosis of macular NV in this condition is often challenging using traditional imaging; late hyperfluorescence in FA is not easy to differentiate from window defects of the retinal pigment epithelium (RPE) and the ill-defined leaking points of CSCR.¹³ Recent studies report that OCTA is more sensitive in the detection of macular NV secondary to CSCR and can enhance diagnosis compared with dye-based angiography (Figure 4).14-16

UVEITIS

OCTA findings in patients with uveitis may have significant implications, documenting potential biomarkers of retinal or choroidal inflammatory activity and response to treatment in a noninvasive manner. 17 If OCTA is unable to detect dye leakage in uveitis, however, it may still assist in evaluating vascular density changes in the superficial and/or deep retinal capillary plexus; these are significantly lower in eyes with vasculitis than in healthy eyes.

Recent advances in widefield OCTA imaging may enhance the detection of peripheral nonperfusion. Additionally, quantitative evaluation of the vasculature can be used to assess disease progression. 18,19

Figure 3. En face 12 x 12 mm OCTA scan of the superficial capillary plexus demonstrates an area of nonperfusion due to a left superotemporal ischemic branch retinal vein occlusion.

OTHER APPLICATIONS

OCTA can be used to evaluate choroidal ischemia corresponding to areas of hypofluorescence on indocyanine green angiography in placoid lesions such as acute posterior multifocal placoid pigment epitheliopathy and serpiginous choroiditis.^{20,21} In contrast, OCTA demonstrated normal choriocapillaris flow in the areas with corresponding hypofluorescence in patients with multiple evanescent white dot syndrome, suggesting shadowing rather than ischemia.22

In multifocal choroiditis or punctate inner choroidopathy, OCTA is useful in distinguishing inflammatory macular NV from avascular inflammatory lesions that are poorly identified using other imaging modalities (Figure 5).²³⁻²⁵

CONCLUSION

OCTA is a rapid, noninvasive imaging tool with clinical applications in a wide range of ophthalmic diseases. However, limitations such as artifacts and segmentation errors can challenge scan interpretation.²⁶

The inability of OCTA to detect leakage is a shortcoming in comparison to FA, limiting its clinical utility. However, the higher resolution and the depth-resolved imaging capability of OCTA add to the clinical assessment of many conditions.³

Along with future technical improvements, more studies are needed to elucidate the clinical utility of OCTA in the diagnosis and monitoring of many common ophthalmic pathologies.

Figure 4. In this patient with choroidal NV secondary to CSCR, fundus autofluorescence shows RPE mottling and track sign of hyperautofluorescence (A). FA shows early hyperfluorescence (B) and late leakage (C). OCT B-scans (D, E) show a thickened choroid, subretinal fluid, intraretinal fluid, subretinal hyperreflective material, and a flat irregular pigment epithelial detachment. OCTA en face scans at the level of the outer retina (F) and choriocapillaris (G) show a choroidal neovascular membrane.

Figure 5. In this patient with uveitis and secondary macular NV, the color fundus photograph (A) and corresponding OCT B-scan (B) show punctate inner choroidopathy lesions. Lower OCT B-scan (C) shows a lesion that is suspicious for secondary type 2 macular NV. OCTA en face images at the level of the outer retina (D) and outer retina-choriocapillary complex (E) show an abnormal vascular network, and the corresponding OCTA B-scan (F) shows flow signals confirming the diagnosis of secondary type 2 macular NV.

1. Thompson IA, Durrani AK, Patel S. Optical coherence tomography angiography characteristics in diabetic patients without clinical diabetic retinopathy. Eye. 2019;33(4):648-652.

2 Moult FM Waheed NK Novais FA et al. Swent-source ontical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy. Reting. 2016;36(Suppl 1):\$2-\$11

3. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018:64:1-55.

4. de Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA). Int J Retino Vitreous. 2015;1:5.

5. Greig EC, Duker JS, Waheed NK. A practical guide to optical coherence tomography angiography interpretation. Int J Retina Vitreous. 2020:6(1):55

6. Rogers S, McIntosh RL, Cheung N, et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia, Ophthalmology, 2010;117(2):313-319.e1.

7. Hayreh SS, Klugman MR, Beri M, Kimura AE, Podhajsky P. Differentiation of ischemic from non-ischemic central retinal vein occlusion during the early acute phase. Graefes Arch Clin Exp Ophthalmol. 1990;228(3):201-217.

8. Nobre Cardoso J, Keane PA, Sim DA, et al. Systematic evaluation of optical coherence tomography angiography in retinal vein occlusion. Am J Ophthalmol. 2016:163:93-107.e6.

9. Shiraki A, Sakimoto S, Tsuboi K, et al. Evaluation of retinal nonperfusion in branch retinal vein occlusion using wide-field optical coherence tomography angiography. Acta Ophtholmol. 2019;97(6):e913-e918.

10. Hirano T, Kakihara S, Toriyama Y, Nittala MG, Murata T, Sadda S. Wide-field en face swept-source optical coherence tomography angingraphy using extended field imaging in diahetic retinopathy Br I Ophthalmol. 2018:102(9):1199-1203. 11. Sawada O. Ichiyama Y. Obata S. et al. Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2018;256(7):1275-1280.

12. Loo RH, Scott IU, Flynn HW Jr, et al. Factors associated with reduced visual acuity during long-term follow-up of patients with idiopathic central serous chorioretinopathy. Retina. 2002;22(1):19-24.

13. Hage R, Mrejen S, Krivosic V, Quentel G, Tadayoni R, Gaudric A. Flat irregular retinal pigment epithelium detachments in chronic central serous chorioretinopathy and choroidal neovascularization. Am J Ophthalmol. 2015;159(5):890-903.e3.

14. Bonini Filho MA, de Carlo TE, Ferrara D, et al. Association of choroidal neovascularization and central serous chorioretinopathy with optical coherence tomography angiography. JAMA Ophtholmol. 2015;133(8):899-906.

15. Quaranta-El Maftouhi M. El Maftouhi A. Eandi CM. Chronic central serous chorioretinopathy imaged by optical coherence tomographic angiography. Am J Ophtholmol. 2015;160(3):581-587.e1.

16 de Carlo TF, Rosenblatt A, Goldstein M, Baumal CR, Loewenstein A, Duker JS, Vascularization of irregular retinal nigment epithelial detachments in chronic central serous chorjoretinopathy evaluated with OCT angiography. Ophtholmic Sura Losers Imagina Retina, 2016:47(2):128-133.

17. Pichi F, Sarraf D, Morara M, Mazumdar S, Neri P, Gupta V. Pearls and pitfalls of optical coherence tomography angiography in the multimodal evaluation of uveitis. J Ophthalmic Inflamm Infect. 2017;7(1):20.

18. Walton RC, Ashmore ED. Retinal vasculitis. Curr Opin Ophthalmol. 2003;14(6):413-419.

19. Kim AY, Rodger DC, Shahidzadeh A, et al. Quantifying retinal microvascular changes in uveitis using spectral-domain optical coherence tomography angiography. Am J Ophtholmol. 2016:171:101-112.

20. Vasconcelos-Santos DV. Rao PK. Davies JB. Sohn EH. Rao NA. Clinical features of tuberculous sergiginouslike choroiditis in contrast to classic serniginous choroiditis. Arch Onbthalmol. 2010:128(7):853-858.

21. Klufas MA, Phasukkijwatana N, lafe NA, et al. Optical coherence tomography angiography reveals choriocapillaris flow reduction in placoid chorioretinitis. Ophthalmol Reting. 2017;1(1):77-91.

22. Pichi F, Srvivastava SK, Chexal S, et al. En face optical coherence tomography and optical coherence tomography angiography of multiple evanescent white dot syndrome: New insights into pathogenesis. Retina. 2016;36(Suppl 1):S178-S188. 23. Thorne JE. Wittenberg S. Jabs DA. et al. Multifocal choroiditis with panuveitis incidence of ocular complications and of loss of visual acuity. Ophthalmology. 2006;113(12):2310-2316.

24. Levison AL, Baynes KM, Lowder CY, Kaiser PK, Srivastava SK. Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis. Br J Ophtholmol. 2017;101(5):616-622. 25. Zahid S, Chen KC, Jung JJ, et al. Optical coherence tomography angiography of chorioretinal lesions due to idiopathic multifocal choroiditis Retina 2017:37(8):1451-1463

26. Arva M. Sabrosa AS. Duker JS. Waheed NK. Choriocapillaris changes in dry age-related macular degeneration and geographic atrophy: a review. Eye Vis (Lond). 2018;5:22.

HAGAR KHALID. MD

- Moorfields Eye Hospital, London
- Institute of Ophthalmology, University College London
- Ophthalmology department, Tanta University, Tanta, Egypt
- Financial disclosure: None

LUÍSA S.M. MENDONÇA, MD

- Department of Ophthalmology, Federal University of São Paulo, Brazil
- Financial disclosure: Consultant (Gyroscope Therapeutics)

KOOSHA RAMEZANI, MD

- Boston Image Reading Center, Boston
- kramezani@bostonimagereadingcenter.com
- Financial disclosure: None

NADIA K. WAHEED, MD, MPH

- New England Eye Center, Tufts Medical Center, Boston
- Financial disclosure: Consultant (Apellis, Nidek, Boehringer Ingelheim); Grants/ Research Support (Carl Zeiss Meditec, Heidelberg, Nidek, Optovue, Topcon, Regeneron); Shareholder (Ocudyne); Office Holder (Gyroscope Therapeutics)