

May/June 2017

Part 1 of 2

Treatment Paradigms in AMD Management: Assessing Consistent Long-Term Dosing

W. Lloyd Clark, MD, Moderator Jay S. Duker, MD Rahul N. Khurana, MD Carl D. Regillo, MD Charles C. Wykoff, MD, PhD

A CME activity jointly provided by Evolve Medical Education LLC, *New Retina MD*, and *Retina Today*.

Supported by an unrestricted educational grant from Regeneron Pharmaceuticals.

This continuing medical education activity is supported through an unrestricted educational grant from Regeneron Pharmaceuticals.

Release Date: June 2017

Expiration Date: June 2018

CONTENT SOURCE

This continuing medical education (CME) activity captures content from a roundtable discussion held in February 2017. This is part of an ongoing series of print and digital activities.

TARGET AUDIENCE

This certified CME activity is designed for retina specialists and general ophthalmologists involved in the management of patients with retinal disease.

LEARNING OBJECTIVES

Upon completion of this activity, the participant should be able to:

- Discuss the outcomes of pivotal studies in AMD, and how study results may differ from "real-world" dosing methods
- Identify patient subtypes (eg, RAP lesion, pigment epithelial detachments, occult lesions) that will require long-term treatment and imaging evaluation.
- Develop a long-term treatment plan for patients with AMD based on results from clinical trials and extension studies
- Compare the extended safety outcomes of anti-VEGF therapies as published in long-term studies.

ACCREDITATION STATEMENT

Evolve Medical Education LLC is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians.

AMA CREDIT DESIGNATION STATEMENT

Evolve Medical Education LLC designates this enduring material for a maximum of 1 *AMA PRA Category 1 Credit.*™ Physicians should claim only the credit commensurate with the extent of their participation in the activity.

TO OBTAIN AMA PRA CATEGORY 1 CREDIT(S)™

To obtain AMA PRA Category 1 Credit[™] for this activity, you must read the activity in its entirety and complete the Post Test/Activity Evaluation Form, which consists of a series of multiple choice questions. To answer these questions online and receive real-time results, please visit evolvemeded.com and click "Online Courses." Upon completing the activity and achieving a passing score of over 70% on the self-assessment test, you may print out a CME credit letter awarding 1 AMA PRA Category 1 Credit.™ Alternatively, please complete the Post Test/Activity Evaluation Form and mail or fax to Evolve Medical Education LLC; PO Box 358; Pine Brook, NJ 07058; Fax: (610) 771-4443. The estimated time to complete this activity is 1 hour.

FACULTY CREDENTIALS

W. Lloyd Clark, MD, Moderator
Palmetto Retina Center
University of South Carolina School of Medicine
Columbia. South Carolina

Jay S. Duker, MD
Tufts Medical Center
Tufts University School of Medicine
Boston, Massachusetts

Rahul N. Khurana, MDPartner at Northern California Retina Vitreous Associates
University of California, San Francisco

Carl D. Regillo, MD
Wills Eye Hospital
Thomas Jefferson University
Philadelphia, Pennsylvania

Charles C. Wykoff, MD, PhD
Retina Consultants of Houston
Blanton Eye Institute, Houston Methodist Hospital
Houston, Texas

DISCLOSURE POLICY

It is the policy of Evolve Medical Education LLC that faculty and other individuals who are in the position to control the content of this activity disclose any real or apparent conflict of interests relating to the topics of this educational activity. Evolve Medical Education LLC has full policies in place that will identify and resolve all conflicts of interest prior to this educational activity.

The following faculty members have the following financial relationships with commercial interests:

W. Lloyd Clark, MD, has had a financial agreement or affiliation during the past year with the following commercial interests in the form of *Consultant/Advisory Board/Speaker's Bureau*: Bayer Pharmaceuticals; Genentech; Ohr Pharmaceutical; Regeneron Pharmaceuticals; and Santen Pharmaceutical Co. Grant/Research Support: Allergan; Genentech, and Regeneron Pharmaceuticals.

Jay S. Duker, MD, has had a financial agreement or affiliation during the past year with the following commercial interests in the form of *Consultant/Advisory Board/Speaker's Bureau:* Alcon; Carl Zeiss Meditec; CoDa Therapeutics, Eleven Biotherapeutics; Nicox; Optovue; and ThromboGenics NV. *Stock/Shareholder:* EyeNetra; Hemera Biosciences; and Opthotech Corporation.

Rahul N. Khurana, MD, has had a financial agreement or affiliation during the past year with the following commercial interests in the form of *Consultant/Advisory Board/Speaker's Bureau*: Allergan; Genentech; and Regeneron Pharmaceuticals.

Carl D. Regillo, MD, has had a financial agreement or affiliation during the past year with the following commercial interests in the form of *Consultant/Advisory Board/Speaker's Bureau*: Alcon; Allergan; Genentech; Iconic Therapeutics; and Notal Vision. *Grant/Research Support*: Alcon; Allergan; Genentech; GlaxoSmithKline; Iconic Therapeutics; Novartis; and Regeneron Pharmaceuticals.

Charles C. Wykoff, MD, PhD, has had a financial agreement or affiliation during the past year with the following commercial interests in the form of Consultant/Advisory Board/Speaker's Bureau: Alcon; Alimera Sciences; Bayer Pharmaceuticals; Clearside Biomedical; DORC International; Genentech; ONL Therapeutics; Regeneron Pharmaceuticals; and ThromboGenics NV. Grant/Research Support: Acucela; Alcon; Allegro Ophthalmics; Allergan; Ampio Pharmaceuticals; Apellis Pharmaceuticals Clearside Biomedical; Genentech; Iconic Therapeutics; Opthotech Corporation; pSivida; Regeneron Pharmaceuticals; Santen Pharmaceutical; ThromboGenics NV; and XOMA Corporation.

EDITORIAL SUPPORT DISCLOSURE

Cheryl Cavanaugh, MS, Evolve Medical Education LLC and Michelle Dalton, Writer; have no real or apparent conflicts of interest to report.

Rishi P. Singh, MD, Peer Reviewer, has had a financial agreement or affiliation during the past year with the following commercial interests in the form of *Consultant/Advisory Board/Speaker's Bureau:* Alcon; Allergan; Carl Zeiss Meditec; Genentech; Optos; Regeneron Pharmaceuticals; and Shire Plc. *Grant/Research Support:* Alcon; Apellis Pharmaceuticals; Genentech; and Regeneron Pharmaceuticals.

OFF-LABEL STATEMENT

This educational activity may contain discussion of published and/or investigational uses of agents that are not indicated by the FDA. The opinions expressed in the educational activity are those of the faculty. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications, and warnings.

DISCLAIMER

The views and opinions expressed in this educational activity are those of the faculty and do not necessarily represent the views of Evolve Medical Education LLC, *New Retina MD, Retina Today*, or Regeneron Pharmaceuticals.

Go to *evolvemeded.com/online-courses/* to view the online version of this supplement.

Treatment Paradigms in AMD Management: Assessing Consistent Long-Term Dosing

Age-related macular degeneration (AMD) is a leading cause of blindness in developed countries, ¹⁻⁶ and its prevalence is expected to increase due to the rapidly aging population. With an overall global prevalence of 8.69%, about 228 million people will be diagnosed with AMD in 2040.⁶ Although there is no "cure," AMD can be managed through medical intervention via intravitreal anti-VEGF in a monthly, pro re nata (PRN), or treat-and-extend dosing (T&E) regimen. This roundtable discusses the unique challenges associated with PRN and T&E, how to translate clinical trial results into real-world practice, and how to maximize disease-free intervals in patients with the neovascular form of AMD. The panel also discusses safety issues such as geographic atrophy and treating patients with known cardiovascular disease.

- W. Lloyd Clark, MD, moderator

PRN AND TREAT AND EXTEND IN CLINICAL TRIALS VS REAL-WORLD APPLICATION

W. Lloyd Clark, MD: Recent pivotal studies in neovascular AMD have supported alternative dosing regimens in patients—PRN and treat and extend—versus our traditional monthly dosing regimen. This discussion will focus on the use of these clinical trials in developing a treatment strategy, how clinical trial treatment regimens differ from those we employ in clinical practice, which tools and strategies in our armamentarium we use to achieve disease-free intervals in patients with AMD, and what our thoughts are on the long-term safety considerations of these treatments.

The CATT trial, which first looked at 2-year and then 5-year outcomes after bevacizumab or ranibizumab for AMD, was pivotal in understanding bevacizumab use relative of FDA-approved therapy. What trials do you use when you consider an alternative dosing treatment strategy in your patients, specifically PRN and T&E?

Carl D. Regillo, MD: Major clinical studies have shown outcomes with PRN dosing are similar to monthly dosing, although not quite as good. The CATT and HARBOR trials provided us with solid data to support that. Five-year CATT data found that 50% of eyes had 20/40 or better visual acuity 5 years post-treatment, confirming that anti-VEGF therapy is a major advance in the treatment of AMD.8 HARBOR, which randomly assigned 1,098 patients to ranibizumab 0.5 mg or 2.0 mg intravitreal injections administered monthly or on a PRN basis after three monthly loading doses, had perhaps the best

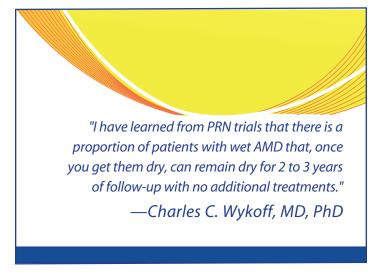
PRN outcomes out there.⁹ All treatment groups had visual improvement (+8.2 to +10.1 letters) and improved anatomic outcomes, and the PRN groups required approximately four fewer injections.⁹ The problem is, in the real world, we cannot replicate those trial results, so PRN leaves a lot to be desired.

That is certainly a major reason why many of us are moving to the T&E approach. We have long-term data that looks very good. We just looked at the long-term results with aflibercept over 2 years 10 and the visual acuity outcomes are quite comparable to the registration studies. 11,12 As another example, the 2-year prospective TREX study showed good outcomes with T&E versus the gold standard monthly therapy. 13,14 The Fight Retina Blindness Study Group from Australia looked at long-term T&E end up to 7 years and showed that visual gains were well-maintained. 15,16 Maintaining the visual gains beyond 1 and 2 years is key. PRN does not stack up to that.

Rahul N. Khurana, MD: PRN is an effective strategy if you see the patient every month indefinitely. But is that realistic? PRN is a reactive strategy, while the benefit of T&E is that you are always treating the patient. If you treat a recurrence of neovascular AMD with PRN, there can be irreversible vision loss and the patients may not regain the vision even with treatment. For example, in the second year of the VIEW studies, 11,12,17 patients were managed with a capped PRN management strategy with monthly monitoring. The outcomes were still good at 2 years, but they lost a little bit of vision compared to the first year. A retrospective, post-hoc analysis of the second year showed about 20% of those patients lost more than 5 letters due to recurrences of fluid with the PRN

approach.^{11,12,17,18} Even with close monitoring, PRN allows for a dangerous recurrence of fluid.

Charles C. Wykoff, MD, PhD: I have learned from PRN trials that there is a proportion of patients with wet AMD that, once you get them dry, can remain dry for 2 to 3 years of follow-up with no additional treatments. If my patient has dried out after one or two injections, I might consider using a PRN treatment regimen with them. Sometimes you will treat a small choroidal neovascular membrane that responds beautifully to intravitreal injections and they do not need additional dosing. Unfortunately, my clinical experience, which reflects data from the published PRN trials, is that this proportion of patients is small. Overall, more than 90% of my wet AMD patients need ongoing dosing, in many cases indefinitely with current generation anti-VEGF therapies. And for those patients, the T&E approach is the most efficient. Patients receive significantly fewer injections over time compared to fixed monthly dosing with comparable long-term outcomes.


Dr. Clark: How do you define T&E in clinical trials? How does that differ from T&E in the real world?

Dr. Wykoff: The challenge with translating clinical research into clinical practice is that the criteria become much looser in the real world. The TREX and ATLAS trials showed that if there is any recurrence of fluid, then the interval is too long. 10,13,14 When Dr. Regillo presented the ATLAS results, he commented that he has a "zero tolerance" policy for fluid, and I agree. I think a mistake that can be made in real-world practice is that one may have a tendency to start extending the intervals between treatments despite residual macular fluid because of injection fatigue either on the part of the doctor and/or the patient. In my own hands, I treat and extend, but I continue with monthly dosing until the macula is absolutely dry before I begin to extend the interval. If I see any recurrence of fluid when I extend the interval, I shorten the interval for the next visit.

SELECTING TREATMENT STRATEGIES AND INTERVAL LENGTH

Dr. Clark: How do you determine interval length?

Dr. Wykoff: It is situation and patient dependent. For example, if it is a monocular patient with a large lesion, then I will favor 1-week interval increases. In comparison, if it is a binocular patient with a smaller lesion with a relatively normal fellow eye, then I will typically start by extending in 2-week increments; after I get the macula dry at 4-week intervals, I will move to a 6-week interval, and so forth. As long as the macula remains dry, I will keep lengthening the interval gradually. Once there is recurrent macular edema, I typically will maintain the patient at a treatment interval just short of that interval. I rarely re-challenge this maximum tolerated interval in practice with the same medication. I rarely stop injecting at 12 weeks or go beyond 12 weeks, regardless of the medication.

Jay S. Duker, MD: I perform individualized therapy. Most of my patients are getting T&E in order to find a reasonable, fluid-free interval, and I will stick with that interval long-term. I extend slowly, and do not generally take my injection interval out past 3 months. On the other hand, I have patients who I try to extend initially, and they end up with recurrent fluid at 5 or 6 weeks, and that interval becomes their fixed interval over the long term. I also have a handful of patients on a PRN regimen who can go 8 or 9 months between injections, have indolent type 1 choroidal neovascularization (CNV), and are perfectly comfortable with a PRN approach.

The CATT trial showed us that there are some patients with a little bit of subretinal fluid, particularly in patients with retinal pigment epithelial detachments and some type 1 membranes, who are never going to be completely dry, even if we continue to treat them monthly.^{8,19} If these patients have good visual acuity with just a sliver of subretinal fluid, I consider that a new baseline and I will often attempt to extend the interval off that new baseline carefully. But if I see that fluid increasing, then I am reverting to more frequent dosing.

Dr. Clark: What are some of the factors you consider as you are developing a treatment strategy?

Dr. Duker: I believe in an induction phase and a maintenance phase. For induction, I treat patients monthly until we reach maximum improvement, both anatomically and visually. If there are two consecutive visits where there are no further anatomic or visual improvement, that becomes the the new baseline. At that point, we discuss the three options: (1) weekly T&E; (2) PRN; or (3) long-term monthly maintenance. My preference is a slow T&E. Some patients have difficulty coming in as often as I would like, so we compromise on a 2-week T&E. Others do not mind the appointments, but hate injections, so we will do PRN. I do not have a one-size-fits-all approach.

Dr. Clark: How have dosing methods evolved over the past 3 to 5 years, based on clinical research and published trial data? Have your attitudes about extending intervals or stopping treatment

changed? Do you have a sense of your overall treatment burden in your practice now compared with 3 years ago?

Dr. Regillo: We have learned a lot since anti-VEGFs first came on board more than a decade ago. It is now about fine-tuning and optimizing outcomes for our patients as we have gotten more comfortable with anti-VEGF injections. The term "fluid-free interval" is very appropriate. I like proactive treatment and the notion of continuous therapy. Drug durability will vary widely from person to person. Some patients have good VEGF suppression in AMD studies that equates to good disease control for as little as 26 days or as far out as 72 days. Studies show that the disease-free interval is relatively consistent for a given patient. T&E is somewhat of a misnomer because over time, we do not always re-extend. I will sometimes sit at a specific interval with a patient because it is working well.

Recurrences are harmful because patients are potentially experiencing CNV growth (Figure 1) that may result in irrevocable harm. As CNV grows, additional tissue destruction may occur. We must prevent CNV growth and the associated signs of exudation. You treat during the induction until you get the macula as dry as possible. It may not always be dry, and some patients we can extend even with a little bit of fluid. But the goal is to make sure the CNV is not growing and, as Dr. Wykoff noted, I support a "zero tolerance" policy for fluid, if possible.

What I have learned over the past decade is how to balance these factors for the patient. Circumstances in the real world, like holidays or vacations, will sometimes force us to tweak a patient's regimen. There is an element of guesswork. There is a lot of trial and error surrounding how to manage this disease on an individual basis. There is an art and a science to it.

Dr. Clark: One practice pattern that has changed for me during the past 3 to 5 years is that I am less likely to discontinue therapy. Early on when we first had anti-VEGF intravitreal injection therapy, I wanted to cure the disease and get people off treatment. What are your thoughts—have you been able to get your patients off treatment?

Dr. Wykoff: It is rare for me to discontinue treatment. The exception is a macula that dries out completely after few injections; I might try to discontinue

therapy in this situation. The other situation is a disciform scar; I might start therapy to see how much improvement we can achieve and if the patient has no benefit with treatment I might discontinue therapy.

If using T&E, I find that someone's maximum fluid-free interval is 7 weeks, I will keep them there long-term. And if they are stable over time, eventually I may re-challenge this interval. In the TREX trial, we repeatedly re-challenged the longest interval. ^{13,14} Although about 75% of patients were unable to stretch their maximum tolerated interval, 25% of patients were able to go longer upon re-challenge of their maximum tolerated interval.

I am not tolerant of subretinal or intra-retinal fluid, and I typically do not intentionally extend the treatment interval beyond a month in the presence of such fluid. My interpretation of PIER, CATT and HARBOR data is that patients have the best chance of optimizing their long-term vision if I continue to treat patients

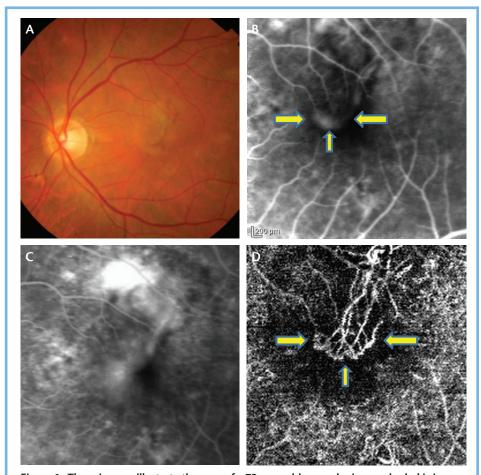
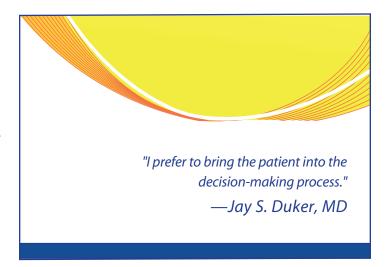


Figure 1. These images illustrate the eyes of a 72-year-old man who is pseudophakic in both eyes. Fundus photograph of the left eye shows greyish elevation of tissue deep to retina at macula suggestive of CNV in AMD (A). FA of the left eye shows a discrete, well-demarcated focal area of hyperfluorescence at macula (arrow) in early phase frame (B), with hyperfluorescence increasing in intensity in later phase frame (C) and extending beyond boundaries of hyperfluorescence identified in early phase, suggestive of classic CNV. The actual network of new vessels (arrow) can be very clearly delineated in OCTA, and its size corresponds to the extent of leakage from CNV seen in fluorescein angiogram (D).


monthly in the presence of persistent fluid and avoid as many recurrences as possible once their macula is dry.^{8,9,19}

Dr. Clark: Is the overall treatment burden higher now than it was in the past?

Dr. Wykoff: I am certainly treating more aggressively today than I was 5 years ago, and I try to maintain that long-term. While we need more data, I am currently not concerned about causing macular atrophy through the appropriate use of anti-VEGF treatments when they are needed to control the exudative disease process; the data from CATT and HARBOR appear inconclusive regarding macular atrophy and how it relates to anti-VEGF dosing.^{8,9,19} There is more vision left on the table from under-treatment than from over-treatment.

Dr. Clark: There is a high incidence of bilateral disease in AMD. Do you have different approaches to managing the second eye of patients with wet AMD?

Dr. Khurana: It is safe to say I am much more cautious and sensitive with a monocular patient than I might be otherwise. But I do try to individualize treatment in the same manner. Chronic con-

ditions can be unpredictable, so patients must be monitored closely at a minimum if not regularly treated. Be very careful of extending too long between treatments. When I first started employing T&E management strategies, I would go out to 4 and 5 months. But then the second year of the LUCAS trial found that patients who were extended to 12 weeks had a higher rate of recurrence.^{21,22} Vision did not return after treatment. These results showed that a

Managing Patient Expectations and Noncompliance

Dr. Clark: If we have to choose one over the other, we all agree that overtreating is more beneficial long-term than undertreating. In the CATT trial, ^{8,19} compliance issues may have played a role in some of those suboptimal results. My experience is that it is not difficult to get buy-in from patients with AMD if you educate them upfront. In your practices, how does patient compliance affect clinical outcome? Do you get pushback from patients when you encourage consistent, frequent visits?

Dr. Regillo: Not as much as you would think, especially if the patient looks at their own OCT. They will notice the fluid if you point it out. I think many patients understand that you are trying to keep the macula as dry as possible. We get our best results when this disease is caught early, when we minimize the recurrences, and when we keep the CNV small. If you make these points to the patient upfront—and can show them what you mean on their OCT—you are less likely to get pushback.

Patients like T&E because it usually leads to less frequent visits, and every encounter is predictable. They know they are there to get evaluated and to get treated, and there is no awkward pushback. With PRN, there can be pushback if the patient was hoping to skip a treatment and you have to deliver the news that they cannot. In general, the burden is the office visit, not the injection, and so patients typically prefer less frequent encounters coupled with the injection over monthly follow-up with intermittent, less frequent injections.

Dr. Duker: I prefer to bring the patient into the decision-making process. I prefer not to state unilaterally, "This is what we are going to do." Anecdotally, I have had patients tell me they have felt like the effect of the injection was wearing off a week or so before their scheduled visit. Often the examination and testing fails to confirm their impression. So I will ask if they want to go to 7 weeks instead of 8, and they typically choose to shorten the interval. This is a way to keep the patient engaged in the treatment paradigm.

Dr. Wykoff: I am clear with patients from the beginning that intravitreal injections can help, but they are not a cure. I have this conversation with patients and their family members repeatedly so we are all on the same page. I agree showing patients their OCT helps. But I do get quite a bit of pushback with patients asking if we can go longer between appointments. I keep them engaged by noting there are newer treatments being evaluated with longer intervals, but for the time being these are the best we have.

Dr. Regillo: The best outcomes come with keeping on top of signs of exudation, keeping our patients informed about their condition, and doing what we can to minimize compliance issues. Informed consent is an ongoing education process. It is important that we address patient questions and what needs to be done with every encounter.

10-week interval was safer with less recurrences when using ranibizumab or bevacizumab with T&E. Again, be careful when extending too long between treatments.

We conducted a sub-analysis of the HARBOR study and looked at the past duration as an indicator for future duration.²³ We found that past performance did not predict future performance.²⁴ Because the disease is so unpredictable, I would rather err on the side of overtreating than undertreating. The concern with recurrences is that you may have irreversible vison loss.

TOOLS FOR TAILORING THERAPY

Dr. Clark: Let us discuss patient subtypes. Analyzing fluorescein angiograms was of critical importance to treatment decisions before anti-VEGF therapy. Today, we "lump" them all together, treating anything with hyperfluorescence under the fovea. But most of us still have an interest in looking at the fluorescein angiogram (FA) and classifying the lesions. Do you use FA as a tool for tailoring initial therapy?

Dr. Khurana: I am a big believer in FA, and I think it is helpful for treatment decisions. I think issues come up if you are just using OCT to guide your treatment decisions. I will use FA at the initial diagnosis and before I start extending. It helps me decide when I want to extend and when we can go longer between treatments.

Dr. Clark: Can you tell which patients have lesions that require chronic, aggressive sustained therapy compared to the patients you may be able to extend relatively early in the course of treatment?

Dr. Regillo: I like using FA at baseline to confirm the diagnosis. I also like to see the size of a lesion because studies consistently show that small lesions have better outcomes in both absolute vision over time or vision gain, especially if the vision is decreased at baseline. After treatment starts, I very rarely get an FA because it does not help me as much with treatment decisions. I think OCT angiography has the potential to be useful in the course of neovascular AMD treatment in select cases to get a quick, noninvasive look to see if the neovascular lesion is growing.

Dr. Clark: Do you change your approach to patients based on the morphology of the choroidal neovascular membrane? Is there a different approach to a patient with a retinal angiomatous proliferation (RAP) lesion versus a truly occult CNV, or are you initially treating patients the same and then moving forward?

Dr. Duker: I induce everybody the same way with monthly injections. But I make observations based on the angiogram, which I still get initially. There are two rare types of lesions that you can predict intensity of therapy ahead of time: extra-foveal CNV and early RAP lesions. If you can treat an extra-foveal CNV with anti-VEGF therapy when the lesion is small, sometimes the lesion does not recur for a long time, if ever. RAP lesions are exquisitely sensitive to anti-VEGF therapy before they have made the connection into the choroid. Those you can shut down and sometimes go

many months between injections. But neither of these lesions are common in my practice.

I do a lot of OCT angiography. Right now it is a great modality to detect the presence of CNV. The future is promising, but we do not currently have enough data on OCT angiography to use it as our sole guide to treating patients.

Dr. Wykoff: I have the occasional rare patient who can go out to 12 weeks and appear dry; I use FA most often on those patients. I will repeat the FA and compare it with baseline. If there is really no evidence of the lesion or definitive leakage, then I might switch from maintaining at quarterly dosing to PRN re-treatment. I do not typically use FA routinely when I am doing standard T&E because I am basing most of my decision on my OCT findings and ophthalmic exam.

Dr. Clark: To make a diagnosis and initiate therapy, we need an initial FA, OCT, and a clinical exam. But how do you use imaging in the treatment phase? Do you have a basic strategy or pattern?

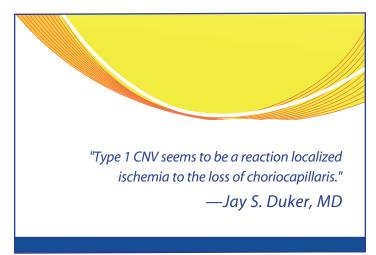
Dr. Khurana: I use FA more than others because I have found there can be a disconnect between what you see on FA and what spectral domain OCT seems to tell us. Let us take the example of occult lesions, where we know we are going to need more treatment. There is good sensitivity with these imaging devices, ²⁸ but they are not perfect. There are some cases of occult CNV that are "dry" on OCT but have leakage on angiography. ²⁸ I am concerned about undertreatment if you are just using OCT, which sometimes do not detect fluorescein leakage, especially for occult lesions. A "dry" OCT may give us a false sense of security, especially if we are only using that information to extend intervals or withhold treatment. I have also been surprised when the OCT is dry but the CNV lesion has enlarged on angiography.

Regarding macular atrophy, obtaining autofluorescence annually or even every other year is helpful to monitor atrophy. It is helpful to supplement the standard OCT with autofluorescence and FA throughout key time points as you are following these patients over time, considering extending intervals between treatments

and or if there is severe vision loss not explained by the OCT. AMD is a chronic disease and having different sets of imaging is helpful as you monitor these patients over time.

Dr. Clark: What is the role of indocyanine green angiography in the age of anti-VEGF therapy?

Dr. Regillo: I very rarely ever get an ICGA at either presentation or in follow-up for neovascular AMD. If there is something unusual happening (for example, if the patient has been doing well and maintaining vision but then inexplicably starts to complain about vision loss), I will do a follow-up FA or OCT angiogram—something in addition to a standard OCT to determine what the cause is, and whether I still have control of the exudative process. If I start to see atrophy, I will follow-up with fundus autofluorescence intermittently to see if that is changing or to better define the location of the atrophy relative to the fovea. ICGA does not usually add anything that is clinically useful to these other tests in the course of treatment.


Dr. Clark: Visual acuity is of primary importance to the patients and regulatory bodies as it pertains to clinical trials and drug approval. How do you analyze visual acuity in your practice? How do you integrate that data into the management of a patient's disease with T&E?

Dr. Wykoff: I use four things to assess how a patient is doing and guide my treatment: patient symptoms, imaging, examination, and Snellen acuity. The most important is the patient's symptoms followed close behind by imaging. If they come in and say that their vision is fine with no change but the Snellen acuity went from 20/40 to 20/60 and the OCT looks stable, I tend to ignore the Snellen acuity.

Dr. Khurana: Symptoms are very important for patients, but it is not my primary parameter. Snellen visual acuity is a helpful surrogate, but it is too subjective and unpredictable. It is often not consistent with the exam or imaging findings, so it is one of our second-tier parameters when monitoring disease. There is, however, a great deal of value in seeing how patients progress over time. When they have vision improvement early on, it keeps them engaged but also means they are going to be a bit more hypersensitive when that vision starts to deteriorate again.

Dr. Clark: How should we bring OCT angiography into clinical practice? Should we use it as a standalone tool or in conjunction with FA?

Dr. Duker: OCT angiography is an excellent tool for diagnosing the presence of neovascularization, whether it is retinal neovascularization from diabetes or sub-retinal CNV from any cause. OCT angiography can tell us if the eye is vascularized right away in most cases. We do not need to do an FA unless there is a reason to subtype it or if we want to see leakage. OCT angiography is also really

helpful to show type 1 neovascualizations, which often features flat, irregular retinal pigment epithelial (RPE) detachment on OCT cross sectional images. These occult or type 1 vessels are usually much larger than what is seen on FA, and the areas that leak are the edges. There is high-flow mature vessels in the center of these large sub-RPE NCV, and about 75% of these type 1 membranes have one or two central trunks, which are not VEGF-responsive.²⁹ It is the fringe areas that are treatable and will show flow reduction after anti-VEGF therapy.

We need more research on CNV to understand why it forms, but type 1 CNV seems to be a reaction localized ischemia to the loss of choriocapillaris,³⁰ which is one of the first things that occurs in both dry and wet AMD. So far, we have been unable to reliably tell if a CNV is active or inactive based on OCT angiography alone. Cross-sectional OCT, clinical examination for hemorrhage, and talking to the patient still surpasses OCT angiography. In the future, I think we will be able to volumetrically quantify these CNVs, but that is still a couple of years away.

Dr. Regillo: OCT angiography is still in its infancy, and we are still learning what it can do and what it can tell us, and how that may influence how we treat. I have found OCT angiography to be potentially useful in select clinical scenarios, such as chronic atypical central serous chorioretinopathy when there is the suspicion for secondary neovascularization.

Dr. Wykoff: We are still evaluating its clinical use as a field, but currently I am using OCT angiography primarily in the context of prospective clinical research. Occasionally, if there is a case where it is unclear if there is choroidal neovascularization on FA and OCT, I will use OCT angiography. In my hands, though, the current generation segmentation algorithms are not as good as I would like.

Dr. Clark: Is it a matter of time before OCT angiography supplants FA in routine retina practice?

Dr. Duker: I think macular FA is on its way out the door. It is

hard for me to convince early-career retina specialists that they need to do an FA for diabetic retinopathy or CNV membranes because the angiograms seem to add little to the treatment regimen and certainly interfere with clinic flow and efficiency. Using cross sectional OCT and OCTA, we have the ability to image and diagnose abnormal vasculature with a single test; and we have to send the patient back to the photographer for a dye-based test that is going to take an additional 45 minutes. Peripheral FA is still important in some diseases, and we are still several years away from wide-field OCT and widespread OCT angiography use. But when that happens, FA will be dead.

ESTABLISHING LONG-TERM TREATMENT PLANS

Dr. Clark: What is the long-term treatment plan for wet AMD? How do you use personalized disease management to reach disease-free intervals in most patients?

Dr. Regillo: It is about using everything at your disposal to get the best vision gains and maintain them over a long time. It is about talking to each patient about trying to keep the macula and their vision as good as possible by keeping on top of the signs of exudation and stressing compliance to the recommended followup visits.

As I mentioned earlier, the work of the Fight Retina Blindness Study Group shows that good long-term visual outcomes are possible in the real-world setting.³¹ This contradicts the 5-year CATT data.⁸ There is definitely an element of relative undertreatment in the 5-year CATT follow-up study along with other studies that show the lack of maintaining the vision gains beyond 2 years or so into the course of treatment.

Dr. Khurana: The 5-year CATT data were helpful for a lot of reasons. Five years after being diagnosed with this blinding condition, 10% of patients were 20/20 or better, and 50% of patients were 20/40 or better. But the vision gains that they achieved in the first 2 years were lost by 5 years, 80% of patients had fluid on OCT, the CNV lesions grew on FA, and 20% were 20/200 or worse despite an injection about every 10 weeks.⁸ That tells me we are still under-treating our patients.

Long-range data shows that the more you treat the better your patients do. Sometimes we are lulled into a routine where the OCT looks dry, we give an injection, and think everything is going well. But over time, there is a gradual loss of vision. Sometimes the OCT gives us a false sense of security. We have to have a low tolerance for any type of fluid, and we need to maintain fixed dosing for patients long-term to maintain as much vision as possible. The RANGE study showed good outcomes with regular treatment under tight intervals. 32,33 I still do not think we are treating enough to maintain the vision that we initially gained in the induction phases, and early on in the treatment of the disease.

Dr. Clark: The TREX AMD trial demonstrated that T&E protocol was equivalent to monthly therapy out to 2 years with a reduced treatment burden. ¹⁴ It is a great example of what can be

done with meticulous follow-up. Is that level of follow-up realistic in everyday clinical practice?

Dr. Wykoff: It is very easy to fall into the trap of undertreatment, which will lead to a gradual vision decline over time. The PIER study³⁴ was the original great example of this. We saw an initial "wow" effect with the monthly loading doses, and then when patients were switched to quarterly dosing, they slowly regressed to baseline over the rest of the year. I do think it is important to be aware of fluid and to go after it. Study after study points toward more frequent dosing being associated with better visual outcomes at a population level. 8,14,23,31,34 It is difficult to do that in the real world for many reasons.

Dr. Duker: There are reasons that these patients lose vision besides recurrent fluid. I think it is dangerous to put a blanket across everything and say, if you are only doing five injections a year, you are under-treating. There are some people who can do very well in the long term with fewer injections. The key is to identify the patients who need frequent injections and keep the intensity up long term while providing individualized therapy with input from patients and their families that enable the clinician to select out the eyes that can do well with less frequent intervals. The interval decisions are often made individually and communally and not just from a one-size-fits-all evidence-based study. But overall, its best to err on the side of overtreatment. If you have any doubts, if the patient is losing vision, if you are seeing any sign of CNV activity, treat the patient and shorten the interval.

GEOGRAPHIC ATROPHY AND OTHER SAFETY CONSIDERATIONS

Dr. Clark: What are some thoughts on the long-term safety considerations of therapy? What is the association between geographic atrophy (GA; Figure 2) and anti-VEGF therapy?

Dr. Regillo: I am not convinced GA is from frequent anti-VEGF therapy. Rather, I think it is more likely to stem from natural dry disease progression and, maybe also influenced by presence of

CNV and associated exudation that typically resolves with anti-VEFG therapy. Unfortunately, we will never know for sure. If GA is somehow exacerbated by frequent anti-VEGF treatment, then it makes sense adhere to the dictum of just enough treatment to achieve the best visual/anatomic results and avoid over treatment. That being said, based on what we know to date, I think that you are more likely to adversely affect the vision outcome in the long run if you withhold anti-VEGF therapy to some degree or under-treat the patient because atrophy is emerging in the course of therapy. Atrophy does play a role in long-term vision outcomes and some of the vision declines that we have seen in some studies. 19,35-38 But more often than not, in wet AMD management, vision declines are due to relative under-treatment with either persistent/ recurrent exudation and/or CNV growth.

Dr. Wykoff: Based on my interpretation of the limited data we have from CATT and HARBOR, I do not think that the appropriate clinical use of anti-VEGF injections makes a significant impact on the natural course of macular atrophy.^{8,9,19} Some analyses have suggested that, at a population level, monthly dosing may be associated with more macular atrophy than PRN dosing. Certainly more data is needed to further address this important issue. I do not think the current data should impact how physicians are using anti-VEGF agents in clinical practice. Most physicians in the United States and around the world use individualized dosing and in this context, the overwhelming majority of data supports treating any evidence of active exudative disease, because there is significant visual acuity to be lost if active CNV membranes are left undertreated.

Dr. Clark: Looking at emerging therapies in the treatment of GA, there is great interest in using anti-complement drugs in patients with dry AMD and geographic atrophy. What is their role in combined GA with exudative AMD?

Dr. Duker: As a founder of a biotech company developing an intravitreal gene therapy based anti-complement treatment for dry AMD, I am biased toward anti-complement therapy. However, there is substantial evidence that complement activation plays a role in both dry and wet AMD. If you block complement, whether it is membrane attack complex, complement factor C-3 or C-5 in laser models of CNV, you can reduce the CNV activity inside by 60% to 70%. ^{4,39-43} That is about the same as anti-VEGF therapy. Anti-complement therapy is not going to be useful as an anti-permeability agent like anti-VEGF therapy. But there may be a role for combined therapy in wet AMD. Ophthotech is currently doing a phase 2 trial looking at combined anti-VEGF and anti-C5 for wet AMD.

Dr. Clark: I agree it would be a shame to suggest undertreatment of

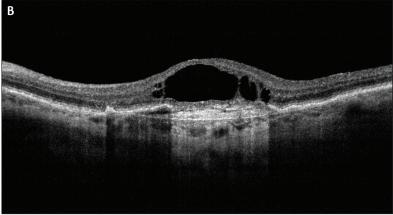


Figure 2. These images illustrate a patient with both exudative and nonexudative AMD. Fundus photography and OCT reveal a hint of glaucoma and a Drance hemorrhage at the nasal margin of the optic nerve (A). Macular degeneration with drusen and areas of focal hyperpigmentation were noted in the macula, as was a zone of juxtafoveal GA. OCT showed a large cystic area overlying the GA (B).

exudative disease at the expense of concerns about GA.

Dr. Duker: The CATT trial discussed atrophy, but it did not specifically look at GA.^{8,19} CATT looked at overall retinal thinning and retinal atrophy. Sometimes we use these two concepts interchangeably. In saying that, there are certain lesions that we know have a high rate of GA—RAP lesions are one example. The patients almost invariably get well-demarcated atrophy in the areas of the type 3 CNV. those lesions out. But there are type 1 CNV lesions where atrophy does not occur even after years and dozens of anti-VEGF injections. So, I do not think we should undertreat patients for the potential fear of atrophy, especially when we have got the real fear of fluid in active wet AMD.

I think a combination therapy may be the answer in the future. Of course, we will need to consider patient burden as it would be difficult for some patients to receive monthly or bi-monthly injections of two drugs forever. But perhaps we will have a slow delivery system that would allow us to hit multiple pathways and not only stop the exudation and keep the choriocapillaris intact, but stop the atrophy as well.

Dr. Clark: Looking at these clinical trials, are there any safety signals, ocular or systemic, that are concerning? Should we feel comfortable treating these patients aggressively with anti-VEGF therapy?

Dr. Khurana: When you look at the totality of the evidence from all the clinical studies, the safety profiles of the drugs in our armamentarium are impressive. ^{7,44,45} From an ocular and systemic perspective, we have always seen little things pop up regarding systemic safety. But, in totality, I do not think there are any trends that should set off a warning. As a retinal community, we must always be vigilant for any adverse events that may occur and share that information freely. Recently, there has been concern with intraocular pressure over time with repeated treatments. ⁴⁶⁻⁴⁹ We should continue to monitor and accordingly treat this as it occurs. However, as a whole we should feel very comfortable with the treatment options.

Dr. Clark: Do you recommend modifying treatment in patients with known cardiovascular disease or recent events?

Dr. Regillo: For the most part, no. I will certainly discuss with the patient the theoretical possibility of a cardiovascular or cerebrovascular event. I have occasionally gone from continuous, T&E approach to a PRN approach for a patient who has had a recent severe, debilitating stroke. But I can count on one hand how many times I have significantly altered management.

- 1. Kahn HA, Leibowitz HM, Ganley JP, et al. The Framingham Eye Study. I. Outline and major prevalence findings. Am J Epidemiol. 1977:106(1):17-32
- 2. American Academy of Ophthalmology Retina Panel. Preferred Practice Pattern: Age-related Macular Degeneration. San Francisco, CA: AAO, 2015.
- 3. Friedman DS, O'Colmain BJ, Munoz B, et al. Prevalence of age-related macular degeneration in the United States. *Arch Ophthalmol*. 2004;122(4):564-572.
- 4. Hageman GS, Gehrs KM, Johnson LV, Anderson DF. Age-related macular degeneration. In: Kolb H, Fernandez EJ, Nelson RW, eds. Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City, UT: University of Utah Health Sciences Center, 2008.
- 5. Schmitz-Valckenberg S, Sahel JA, Danis R, et al. Natural H\history of geographic atrophy progression secondary to age-related macular degeneration (Geographic Atrophy Progression Study). *Ophthalmology*. 2016;123(2):361-368.

- 6. Wong CW, Wong TY, Cheung CM. Polypoidal Choroidal Vasculopathy in Asians. J Clin Med 2015;4(5):782-821.
- 7. CATT Research Group, Martin DF, Maguire MG, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. *N Engl J Med*. 2011;364(20):1897-1908.
- 8. Comparison of Age-related Macular Degeneration Treatments Trials Research Group, Maguire MG, Martin DF, et al. Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration: The comparison of age-related macular degeneration treatments trials. *Ophthalmology*, 2016;123(8):1751-1761.
- 9. Busbee BG, Ho AC, Brown DM, et al. Twelve-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. *Ophthalmology*, 2013;120(5):1046-1056.
- 10. DeCroos FC, Reed DC, Adam MK, et al. Prospective, Multicenter investigation of aflibercept treat and extend therapy for neovascular age-related macular degeneration (ATLAS Study): One and two year results. Paper presented May 4. Association for Research in Vision and Ophthalmology. Seatlle, WA, 2016.
- 11. Schmidt-Erfurth U, Kaiser PK, Korobelnik JF, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. *Ophthalmology*. 2014;121(1):193-201.
- 12. Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119(12):2537-2548.
- 13. Wykoff CC, Croft DE, Brown DM, et al. Prospective trial of treat-and-extend versus monthly dosing for neovascular age-related macular degeneration: TREX-AMD 1-Year Results. Ophthalmology. 2015;122(12):2514-2522.
- 14. Wykoff CC, Ou WC, Brown DM, et al. Randomized trail of treat-and-extend versus monthly dosing for neovascular age related macular degeneration: 2-year results of the TREX-AMD Study. *Ophthalmol Retina*. 2017 in press.
- 15. Gillies MC, Campain A, Barthelmes D, et al. Long-term outcomes of treatment of neovascular age-related macular degeneration: Data from an observational study. *Ophthalmology*. 2015;122(9):1837–1845.
- 16. Gillies M, Campain A, Barthelmes D, et al. Long-term Outcomes of Anti-VEGF Therapy for AMD. American Academy of Ophthalmology Retina Subspecialty Day. Chicago, IL, 2016.
- 17. Marcus D, VIEW Extension Study Group. Long-term Follow-up of Intravitreal Aflibercept Injection (IAI) for Neovascular Age-Related Macular Degeneration (nAMD) in an Open-Label Extension of the VIEW1 Study Association for Resarch in Vision and Ophthalmology. Orlando, FL. May 4-8, 2014.
- 18. Richard G, Mones J, Wolf S, et al. Scheduled versus pro re nata dosing in the VIEW trials. Ophthalmology. 2015;122(12):2497–2503.
- 19. Comparison of Age-related Macular Degeneration Treatments Trials Research Group, Martin DF, Maguire MG, et al.
 Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. *Ophthalmology*. 2012;119(7):1388-1398.
- 20. Fauser S, Schwabecker V, Muether PS. Suppression of intraocular vascular endothelial growth factor during aflibercept treatment of age-related macular degeneration. *Am J Ophthalmol.* 2014;158(3):532-536.
- 21. Berg K, Hadzalic E, Gjertsen I, et al. Ranibizumab or bevacizumab for neovascular age-related macular degeneration according to the Lucentis compared to Avastin study treat-and-extend protocol: Two-year results. Ophthalmology. 2016;123(1):51-59.
- 22. Berg K, Pedersen TR, Sandvik L, Bragadottir R. Comparison of ranibizumab and bevacizumab for neovascular age-related macular degeneration according to LUCAS treat-and-extend protocol. *Ophthalmology*. 2015;122(1):146-152.
- 23. Sarraf D, London NJ, Khurana RN, et al. Ranibizumab treatment for pigment epithelial detachment secondary to neovascular age-related macular Ddgeneration: Post hoc analysis of the HARBOR Study. Ophthalmology. 2016;123(10):2213–2224.
- 24. Khurana RN, Chang LK, Shapiro H, et al. Clinical value of prior response to anti-VEGF treatment and implications for AMD dosing: A HARBOR study subanalysis. Poster 539. American Academy of Ophthalmology. Chicago, IL, 2016.
- 25. Regillo CD, Busbee BG, Ho AC, et al. Baseline predictors of 12-month treatment response to ranibizumab in patients with wet age-related macular degeneration. Am J Ophthalmol. 2015;160(5):1014-1023 e2.
- 26. Ying GS, Huang J, Maguire MG, et al. Baseline predictors for one-year visual outcomes with ranibizumab or bevacizumab for neovascular age-related macular degeneration. *Ophthalmology*. 2013;120(1):122-129.
- 27. Shah N, Maguire MG, Martin DF, et al. Angiographic cystoid macular edema and outcomes in the comparison of age-related macular degeneration treatments trials. *Ophthalmology*. 2016;123(4):858-864.
- 28. Khurana RN, Dupas B, Bressler NM. Agreement of time-domain and spectral-domain optical coherence tomography with fluorescein leakage from choroidal neovascularization. *Ophthalmology*. 2010;117(7):1376-1380.
- 29. Kuehlewein L, Bansal M, Lenis TL, et al. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol. 2015;160(4):739-748 e2.
- 30. Biesemeier A, Taubitz T, Julien S, et al. Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration. *Neurobiol Agina*. 2014;35(11):2562-2573.
- 31. Kim LN, Mehta H, Barthelmes D, et al. Meta-analysis of real-world outcomes of intravitreal ranibizumab for the treatment of neovascular age-related macular degeneration. *Retina*. 2016;36(8):1418-1431.
- 32. Clark WL. Evaluation of long-term treatment with intravitreal affibercept injection (IAI) in patients completing the VIEW 1 and VIEW Extension Studies: Two-year results of the RANGE study. Poster PA028. American Academy of Ophthalmology. Chicago, IL, 2016.
- 33. Clark L. Evaluation of long-term treatment with intravitreal affilbercept injection (IAI) in patients completing the VIEW 1 and VIEW Extension Studies: One year results of the RANGE study. The Retina Society. Denver, CO, 2015.
- 34. Abraham P, Yue H, Wilson L. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER study year 2. Am J Ophthalmol. 2010;150(3):315-324 e1.
- 35. Grunwald JE, Daniel E, Huang J, et al. Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. *Ophthalmology*. 2014;121(1):150–161.
- 36. Enslow R, Bhuvanagiri S, Vegunta S, et al. Association of anti-VEGF injections with progression of geographic atrophy. Ophthalmol Eye Dis. 2016;8:31-32.
- 37. Schutze C, Wedl M, Baumann B, et al. Progression of retinal pigment epithelial atrophy in antiangiogenic therapy of neovascular age-related macular degeneration. *Am J Ophthalmol*. 2015;159(6):1100-1114 e1.
- 38. Bhisitkul RB, Mendes TS, Rofagha S, et al. Macular atrophy progression and 7-year vision outcomes in subjects from the ANCHOR, MARINA, and HORIZON studies: the SEVEN-UP study. Am J Ophthalmol. 2015;159(5):915-924 e2.

Assessing Consistent Long-Term Dosing

- 39. Edwards AO, Ritter R, 3rd, Abel KJ, et al. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308(5720):421-424.
- 40. Haines JL, Hauser MA, Schmidt S, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308(5720):419-421.
- 41. Scholl HP, Charbel Issa P, Walier M, et al. Systemic complement activation in age-related macular degeneration. *PLoS One*. 2008;3(7):e2593.
- 41. Yates JR, Sepp T, Matharu BK, et al. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007;357(6):553-561.
- 43. Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. *Science*. 2005;308(5720):385-389
- 44. Sarwar S, Clearfield E, Soliman MK, et al. Aflibercept for neovascular age-related macular degeneration. *Cochrane Database Syst Rev.* 2016;2:CD011346.
- 45. Eldem BM, Muftuoglu G, Topbas S, et al. A randomized trial to compare the safety and efficacy of two ranibizumab dosing regimens in a Turkish cohort of patients with choroidal neovascularization secondary to AMD. *Acta Ophthalmol.* 2015;93(6):e458-464.
 46. Eadie BD, Etminan M, Carleton BC, et al. Association of repeated intravitreous bevacizumab injections with risk for glaucoma surgery. *JAMA Ophthalmol.* 2017;135(4):363-368.
- 47. Bakri SJ, Moshfeghi DM, Francom S, et al. Intraocular pressure in eyes receiving monthly ranibizumab in 2 pivotal age-related macular degeneration clinical trials. *Ophthalmology*. 2014;121(5):1102–1108.
- 48. Freund KB, Hoang QV, Saroj N, Thompson D. Intraocular pressure in patients with neovascular age-related macular degeneration receiving intravitreal aflibercept or ranibizumab. *Ophthalmology*. 2015;122(9):1802-1810.
- 49. Bressler SB, Almukhtar T, Bhorade A, et al. Repeated intravitreous ranibizumab injections for diabetic macular edema and the risk of sustained elevation of intraocular pressure or the need for ocular hypotensive treatment. *JAMA Ophthalmol.* 2015;133(5):589-597.

INSTRUCTIONS FOR CME CREDIT

To receive AMA PRA Category 1 Credit,™ you must complete the Post Test and Activity Evaluation and mail or fax to Evolve Medical Education LLC; PO Box 358, Pine Brook, NJ 07058; Fax: (610) 771-4443. To answer these questions online and receive real-time results, please visit evolvemeded.com and click "Online Courses." If you are experiencing problems with the online test, please email us at support@evolvemeded.com. Certificates are issued electronically, please provide your email address below.

Please type or print clearly, or we will be unable to issue your certificate. Name Phone (required) _____ 🖵 Email (required) _____ City_ State TREATMENT PARADIGMS IN AMD MANAGEMENT: ASSESSING CONSISTENT LONG-TERM DOSING **CME QUESTIONS** 1 AMA PRA Category 1 Credit™ Expires June 2018 If a patient with neovascular AMD has a recurrence of fluid or CNV activity When should you potentially modify treatment of patients with while on treat and extend treatment regimens, you should _____. cardiovascular disease? a. Extend the interval a. You should not; cardiovascular disease is an irrelevant comorbidity b. Shorten the interval b. Only in patients with a stroke event in the previous 3 months c. Discontinue treatment c. Only in patients with a stroke event in the previous 2 years d. Continue maintenance therapy d. You should always modify treatment in a patient with any known cardiovascular disease or cardiovascular event Please rate your confidence in your ability to evaluate and compare the safety and efficacy of different dosing strategies (eg, monthly treatment, TAE, PRN)? 7. of type-1 membranes have central trunks that are not responsive to (Based on a scale of 1 to 5 with 1 being not at all confident and 5 being extremely anti-VEGF therapy. confident.) a. 25% a. 1 b. 50% b. 2 c. 75% c. 3 d. 85% d. 4 e. 5 Please rate how often you intend to apply outcomes of pivotal AMD studies to "real-world" patient assessment, diagnosis, treatment, and management Agree or disagree: Aggressive anti-VEGF therapy has a substantial impact on (based on a scale of 1 to 5 with 1 being never and 5 being always): macular atrophy progression in patients with AMD and should be avoided. a. Yes, the data are conclusive b. 2 b. No, macular atrophy is tied to under-treatment c. 3 c. Data are inconclusive d. 4 e. 5 OCT angiography alone is most useful to diagnose all conditions listed except Indicate which statement(s) is(are) true. a. Chronic atypical central serous chorioretinopathy a. Undertreatment is better than overtreatment in neovascular AMD b. Vascularization in type 1 vessels b. Anti-VEGF treatments do not pose significant systemic threats c. Choroidal neovascularization c. OCT angiography should not be used as a sole determinant of disease d. Geographic atrophy progression d. Studies have shown no clinical or statistical difference between monthly, PRN, trial demonstrated that treat and extend protocol was equivalent to or treat and extend dosing regimens in terms of visual outcomes in neovascular monthly therapy out to 2 years with a reduced treatment burden. a. CATT e. Vision gains after anti-VEGF injections in neovascular AMD are permanent. b. TREX c. HARBOR 10. Based on evidence from clinical trials, which of the below individualized d. PIER dosing strategies for anti-VEGF treatments has been shown most effective? a. Monthly treatment b. Treat and extend c. PRN

d. None of the above

ACTIVITY EVALUATION

Did the program meet the following educational objectives?	Agree	Neutral	Disagree
Discuss the outcomes of pivotal studies in AMD, and how study results may differ from "real-world" dosing methods.			
Identify patient subtypes (eg, RAP lesion, pigment epithelial detachments, occult lesions) that will require long-term treatment and imaging evaluation			
Develop a long-term treatment plan for patients with AMD based on results from clinical trials and extension studies.			
Compare the extended safety outcomes of anti-VEGF therapies as published in long term studies.			
Your responses to the questions below will help us evaluate this CME activity. They will provide us with e made in patient care as a result of this activity as required by the Accreditation Council for Continuing N Name and email:			
Do you feel the program was educationally sound and commercially balanced?			
Rate your knowledge/skill level prior to participating in this course: 5 = High, 1 = Low Rate your knowledge/skill level after participating in this course: 5 = High, 1 = Low Would you recommend this program to a colleague?			
Please identify how you will improve/change: Change the management and/or treatment of patients. Please specify:			
Create/revise protocols, policies, and/or procedures. Please specify:			
Please identify the barriers to change. Cost Lack of consensus or professional guidelines Lack of administrative support Lack of time to assess/counsel patients Lack of opportunity (patients) Reimbursem Lack of resources (equipment) Patient compliance issues No barriers Other Please specify:	nent/insur	-	nce
To help evaluate this CME activity, may we contact you by email in 1 to 2 months to see if you have made your email address below.	this char	nge? If so, ple	ase provide

Provided by Evolve Medical Education LLC and distributed with *New Retina MD* and *Retina Today*.

Supported through an unrestricted educational grant by Regeneron Pharmaceuticals.

