The Role of Steroids in the Treatment of Diabetic Macular Edema

Multiple pharmacologic strategies are currently available.

BY PAOLO LANZETTA, MD; AND DANIELE VERITTI, MD

iabetic macular edema (DME) is a leading cause of visual impairment that occurs as an increased accumulation of fluid within the intraretinal layers of the macula as a result of microvascular changes and breakdown of the blood-retinal barrier. The standard of care for DME is laser photocoagulation. A substantial group of patients, however, are unresponsive to laser therapy and fail to improve after photocoagulation. Lee and Olk¹ have reported that, 3 years after initial grid treatment, visual acuity improved in 14.5% of eyes, did not change in 60.9%, and decreased in 24.6% of patients with DME. Moreover, new insights in the pathogenesis of macular edema and newer imaging instruments, such as optical coherence tomography, have led to the identification of different forms of this condition that may also respond differently to a number of therapeutic approaches. Consequently, different treatment strategies are being investigated.

In recent years, the intravitreal administration of steroids has provided promising results. A complete understanding of the mechanism of action of corticosteroids has not been fully clarified. The antiinflammatory, angiostatic and antipermeability proprieties of corticosteroids, however, seem to be related to interference with many regulatory components of gene expression. This includes the inhibition of the expression of vascular endothelial growth factor (VEGF) and key proinflammatory genes (tumor necrosis factor alpha [TNF- α] and other inflammatory chemokines), and the inducing of gene functioning as antiinflammatory factors (pigment-derived growth factor-PEDF). The antiinflammatory activity of steroids is also related to the inhibition of the

A complete understanding of the mechanism of action of corticosteroids has not been fully clarified.

phospholipase A2 pathway, to the lower release of inflammatory cell mediators, and to reduced leukocyte chemotaxis. Additionally, triamcinolone acetonide (TA) seems to reduce the expression of matrix metalloproteinases and to down-regulate intercellular adhesion molecule 1 (ICAM1) on choroidal endothelial cells. 8

INTRAVITREAL TRIAMCINOLONE ACETONIDE

Intravitreal TA has been used for treatment of DME, and a number of randomized clinical trials have demonstrated significant improvements either in morphological or functional outcomes. 9-12 A carefully designed prospective randomized trial conducted by the Diabetic Retinopathy Clinical Research Network (DRCR.net) investigated the efficacy and safety of 1-mg and 4-mg doses of preservative-free intravitreal TA in comparison with focal or grid laser photocoagulation. 13 Eight hundred-forty study eyes with DME were randomized to either focal or grid laser photocoagulation (n=330), 1 mg TA (n = 256), or 4 mg TA (n = 254). At the 2-year primary outcome, the mean ±SD change in the visual acuity from baseline was 1 ±17 letters in the laser group, -2 ± 18 letters in the 1-mg TA group, and -3 ± 22 letters in the 4-mg TA group. Mean ±SD reductions in central macular thickness were 139 ±148 µm in the laser

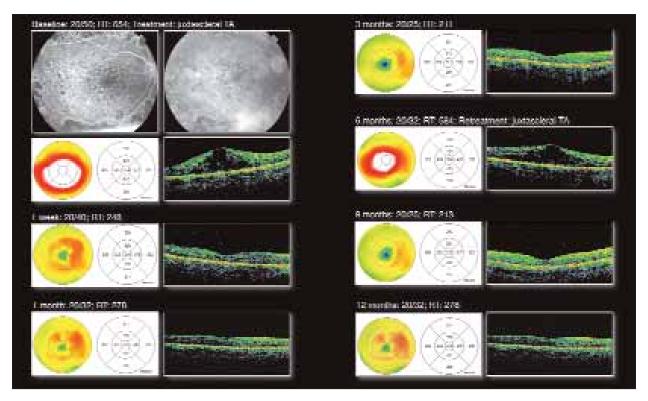


Figure 1. Diffuse diabetic macular edema unresponsive to laser photocoagulation treated with juxtascleral infusion of a modified formulation of triamcinolone acetonide. Evolution of tomographic features shows a reduction of macular edema at 1 week and 1 and 3 months. At 6 months, edema recurred and the patient was retreated. The second injection was effective in reducing central retinal thickness at 9 and 12 months. At baseline, fluorescein angiography shows late hyperfluorescence due to a generalized breakdown of the inner blood-retinal barrier.

group, $86\pm167~\mu m$ in the 1-mg TA group, and $77\pm160~\mu m$ in the 4-mg TA group. The mean number of treatments at the end of follow-up was 2.9 for the laser group, 3.5 for the 1-mg, and 3.2 for the 4-mg TA groups. Three-year follow-up data were available in 306 eyes. The mean change in the visual acuity letter score from baseline to 3 years was +5 in the laser group and 0 in both the triamcinolone groups. 14

Although the recent enthusiasm for intravitreal TA has been reshaped by the results of this study, physicians are fully aware that a significant proportion of patients with diffuse DME have poor prognosis despite grid laser photocoagulation. Therefore, intravitreal TA has been tested for these cases of diffuse DME refractory to laser treatment.

Gillies et al¹² reported 2-year outcomes of a randomized trial evaluating the efficacy of repeated intravitreal injections of TA in DME persistent despite laser treatment. Mean improvement in visual acuity was 3.1 letters in the triamcinolone injection group compared with an average loss of 2.9 letters in the control group. Mean retinal thickness reduction was 125 μ m in the TA group and 71 μ m in the control group. Hauser et al¹⁵ com-

pared the efficacy of different doses of intravitreal TA in eyes with refractory diffuse DME. Forty-five eyes were randomized to receive 1, 2, or 4 mg intravitreal TA. At 24 weeks, visual acuity improvement was 3.4, 8.1, and 4.6 letters in the 1, 2, and 4 mg intravitreal TA groups, respectively. Kim et al¹⁶ studied the efficacy of 2-mg and 4-mg intravitreal TA in refractory DME. Six-month results were available for 25 eyes. At 6 months, visual acuity improvement was 3.7 letters for the 2-mg group and 7.4 for the 4 mg group. Audren et al⁹ reported the results of a 6-month controlled trial. Seventeen patients were enrolled; one eye of each patient was injected with 4 mg TA, while the other eye served as a control. At the end of the study a mean increase in visual acuity of 6.9 letters was observed in the injected eyes, while a mean loss of 3.6 letters was reported in the control eyes. Jonas et al11 examined the visual outcome of patients receiving an intravitreal injection of 20 mg of TA. Visual acuity improved significantly among the 28 eyes included in the study group by 3.4 Snellen lines. Sutter et al¹⁷ evaluated the efficacy of 4 mg intravitreal TA in a 3-month randomized, controlled trial. At the end of the followup, visual acuity change was +5 letters in the treatment group (n=33) and -0.1 letters in the control group (n=32). Beer et al¹⁸ observed that adequate concentrations of TA could provide therapeutic effects for approximately 3 months after 4-mg intravitreal TA injection. Audren et al¹⁹ suggested a maximum effect duration of 140 days. This is consistent with drug efficacy duration after intravitreal injection in previously published clinical trials.

In regard to adverse events, intravitreal TA injections may carry considerable risk.

In regard to adverse events, intravitreal TA injections may carry considerable risk, including acute infectious endophthalmitis, pseudoendophthalmitis and iatrogenic retinal breaks. A recent review reported an estimated incidence of endophthalmitis after intravitreal administration of TA of 1.4% per injection (24/1,739).²⁰ In the DRCR.net study no cases of endophthalmitis or inflammatory pseudoendophthalmitis were reported after any of the 1649 intravitreal injections.¹³

PERIBULBAR TRIAMCINOLONE ACETONIDE

Growing evidence is showing the usefulness of the transcleral pathway in delivering drug to the macular retina.²¹⁻²⁴ Transcleral delivery of TA is routinely used for the treatment of various inflammatory eye diseases, and recently it has been proposed for the treatment of DME. Some studies suggest that intravitreal injection of TA may be more effective than juxtascleral infusion for the treatment of refractory DME. Bonini-Filho et al²⁵ compared the efficacy of posterior sub-Tenon's infusion and intravitreal injection of TA in a randomized trial in 28 eyes with refractory diffuse DME. Retinal thickness significantly improved in the intravitreal TA group when compared with the sub-Tenon's TA group at 2 weeks and 1, 2, 3, and 6 months after treatment (P<.01). The authors suggested that this difference may be due in part to reflux of the drug, which was noted in 21.4% of juxtascleral injections. Cardillo et al,26 in a retrospective study on in 85 eyes treated with posterior sub-Tenon TA and 41 eyes with intravitreal TA, concluded that in patients with diffuse DME intravitreal injection of TA was more favorable than posterior sub-Tenon's injection for the anatomic and functional aspects of improvement. Other authors have shown more benefit when sub-Tenon TA. Ozdek et al²⁷ retrospectively evaluated the efficacy of posterior

sub-Tenon and intravitreal TA injections in DME refractory to conventional grid laser photocoagulation. The effect of 20 mg/0.5 mL sub-Tenon injection was less dramatic than that of intravitreal TA, although effective both functionally and anatomically with a duration effect of about 3 months. Similarly, Bakri and Kaiser²⁸ showed that 40 mg sub-Tenon injection was beneficial in improving or stabilizing visual acuity in patients with refractory DME. Choi et al²⁹ compared a single 40 mg posterior sub-Tenon injection to intravitreal injection in 60 patients with DME over a 3-month period and concluded that sub-Tenon administration had comparable effect to the intravitreal route with lower risk of elevated intraocular pressure. Cellini et al³⁰ demonstrated that 3 months after administration, intravitreal and sub-tenon injection of TA produce the same improvement in visual acuity and an equally significant reduction in retinal thickness. Recently, Veritti et al³¹ reported the results of a 12-month study evaluating prospectively the efficacy and safety of posterior juxtascleral infusion of a modified formulation of TA for the treatment of diffuse DME refractory to laser photocoagulation. Modified formulation of TA consisted in a suspension of 40 mg TA, 20 mg sodium chondroitin sulfate, and 15 mg sodium hyaluronate (1.5 mL). Mean improvement in visual acuity among the 22 study eyes was 0.15 logMAR at the end of follow-up. Mean reduction in central retinal thickness was 128 µm. On average, studied eyes received 1.5 treatments. The authors suggested that the formulation of TA proposed in the study has a duration effect of 6 months (Figure 1). The modified formulation of TA was used in order to enhance its density and viscosity, avoiding reflux and promoting the drugs persistence in the retromacular space. Additionally, the authors postulated that possible interactions between the glycosaminoglycans included in this formulation and those of the scleral matrix may influence the drugs diffusion through the sclera into the eye. Moreover, it is known that sodium hyaluronate may have antiangiogenic properties.32

CORTICOSTEROID IMPLANTS

Several intravitreal steroid-releasing implants have been designed in an attempt to provide long-term drug delivery to the macular region. These include non-biodegradable and biodegradable dexamethasone, fluocinolone acetonide, and triamcinolone acetonide-implants. Posurdex (Allergan Inc.) is a biodegradable extended-release form of dexamethasone. The polymer matrix composed of poly-lactide-co-glycolide copolymer releases dexamethasone over approximately 1 month, with a therapeutic effect for about 4 months.³³ It is injected via pars plana with a 22-gauge device. Retisert

(Bausch & Lomb) is a nonbiodegradable polymer intravitreal implant designed to release 0.59 mg of fluocinolone acetonide to the posterior segment at an initial rate of 0.6 µg/day, decreasing over the first month to a steady state of 0.3-0.4 µg/day. Drug release can last for a period of 30 months.34 Iluvien (Alimera Sciences) is a nonerodable injectable fluocinolone intravitreal implant studied to deliver a low dose of drug for up to either 18 or 36 months. It delivers either 0.2 µg or 0.5 µg of drug per day. I-vation (SurModics) is a nonbiodegradable, helical, metal alloy implant coated with polybutyl methacrylate, polyethylene vinyl acetate polymers and TA.

CONCLUSION

The multiple pharmacologic strategies currently available for the treatment of DME, expand the treatment armamentarium beyond laser photocoagulation. Favorable results has been reported with intravitreal administration of TA in the treatment of DME persistent despite laser photocoagulation. However, intravitreal TA shows a limited duration of action with the need of multiple injections and carries the implicit risks of repeated procedures. Therefore, other treatment modalities are being evaluated. Corticosteroids implants can provide extend release of steroids with long-lasting appropriate therapeutic levels of drug reaching the macular tissue. Peribulbar administration of a modified formulation of triamcinolone acetonide has been described to effectively reduce macular thickening due to diffuse DME unresponsive to conventional grid laser photocoagulation. The modified formulation used in our study accounts for the prolonged action of the drug with a low incidence of side effects thanks to the extraocular delivery route.

Paolo Lanzetta, MD, is an Associate Professor in the Department of Ophthalmology at the University of Udine, Italy. The authors report no financial interests. Dr. Lanzetta can be reached at +39 0432 559 905; fax: +39 0432 559 904; or via e-mail at paolo.lanzetta@uniud.it.

Daniele Veritti, MD, is in the Department of Ophthalmology, University of Udine. Dr. Veritti can be reached via e-mail at verittidaniele@gmail.com.

- 1. Lee CM, Olk RJ. Modified grid laser photocoagulation for diffuse diabetic macular
- edema. Long-term visual results. Ophthalmology. 1991;98:1594-602.

 2. Tsaprouni LG, Ito K, Punchard N, Adcock IM. Triamcinolone acetonide and dexamethasome suppress TNF-alpha-induced histone H4 acetylation on lysine residues 8 and 12 in mononuclear cells. Ann N Y Acad Sci. 2002;973:481-3.
- 3. Juergens UR, Jager F, Darlath W, Stober M, Vetter H, Gillissen A. Comparison of in vitro-activity of commonly used topical glucocorticoids on cytokine- and phospholipase inhibition. Eur J Med Res. 2004;9:383-90.
- 4. Tong JP, Lam DS, Chan WM, Choy KW, Chan KP, Pang CP. Effects of triamcinolone on the expression of VEGF and PEDF in human retinal pigment epithelial and human umbilical vein endothelial cells. Mol Vis. 2006;12:1490-5.

- 5. Kim YH, Choi MY, Kim YS, et al. Triamcinolone acetonide protects the rat retina from STZ-induced acute inflammation and early vascular leakage. Life Sci 2007;81:1167-73. 6. Zhang SX, Wang JJ, Gao G, Shao C, Mott R, Ma JX. Pigment epithelium-derived factor
- (PEDF) is an endogenous antiinflammatory factor. FASEB J. 2006;20:323-5. 7. Abelson MB, Butrus S. Corticosteroids in ophthalmic practice. In: Abelson MB, Neufeld
- AH, Topping TM, eds. Principles and practice of ophthalmology. Philadelphia, PA: W.B. Saunders: 1994:1014
- 8. Mizuno S, Nishiwaki A, Morita H, Miyake T, Ogura Y. Effects of periocular administration of triamcinolone acetonide on leukocyte-endothelium interactions in the ischemic retina. Invest Ophthalmol Vis Sci. 2007;48:2831-6.
- 9. Audren F, Erginay A, Haouchine B, et al. Intravitreal triamcinolone acetonide for diffuse diabetic macular oedema: 6-month results of a prospective controlled trial. Acta Ophthalmol Scand. 2006:84:624-30.
- 10. Avitabile T, Longo A, Reibaldi A. Intravitreal triamcinolone compared with macular laser grid photocoagulation for the treatment of cystoid macular edema. Am J Ophthalmol. 2005:140:695-702.
- 11. Jonas JB, Kamppeter BA, Harder B, Vossmerbaeumer U, Sauder G, Spandau UH. Intravitreal triamcinolone acetonide for diabetic macular edema: a prospective, randomized study. J Ocul Pharmacol Ther. 2006;22:200-7.
- 12. Gillies MC, Sutter FK, Simpson JM, Larsson J, Ali H, Zhu M. Intravitreal triamcinolone for refractory diabetic macular edema: two-year results of a double-masked, placebo-controlled, randomized clinical trial. Ophthalmology. 2006;113:1533-8.
- 13. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology. 2008;115:1447-9, 9 e1-10.
- 14. Beck RW, Edwards AR, Aiello LP, et al. Three-year follow-up of a randomized trial comparing focal/grid photocoagulation and intravitreal triamcinolone for diabetic macular edema. Arch Ophthalmol. 2009;127:245-51
- 15. Hauser D, Bukelman A, Pokroy R, et al. Intravitreal triamcinolone for diabetic macular edema: comparison of 1, 2, and 4 mg. Retina. 2008;28:825-30.
- 16. Kim JE, Pollack JS, Miller DG, Mittra RA, Spaide RF. ISIS-DME: a prospective, randomized, dose-escalation intravitreal steroid injection study for refractory diabetic macular edema. Retina. 2008;28:735-40.
- 17. Sutter FK, Simpson JM, Gillies MC. Intravitreal triamcinolone for diabetic macular edema that persists after laser treatment: three-month efficacy and safety results of a prospective, randomized, double-masked, placebo-controlled clinical trial. Ophthalmology. 2004:111:2044-9.
- 18. Beer PM, Bakri SJ, Singh RJ, Liu W, Peters GB, 3rd, Miller M. Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. Ophthalmology. 2003;110:681-6.
- 19. Audren F, Tod M, Massin P, et al. Pharmacokinetic-pharmacodynamic modeling of the effect of triamcinolone acetonide on central macular thickness in patients with diabetic macular edema. Invest Ophthalmol Vis Sci. 2004;45:3435-41.
- 20. Jager RD, Aiello LP, Patel SC, Cunningham ET, Jr. Risks of intravitreous injection: a comprehensive review. Retina. 2004;24:676-98.
- 21. Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52:37-48.
- 22. Olsen TW, Edelhauser HF, Lim JI, Geroski DH. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest Ophthalmol Vis Sci. 1995;36:1893-903.
- 23. Ambati J, Gragoudas ES, Miller JW, et al. Transscleral delivery of bioactive protein to the choroid and retina. Invest Ophthalmol Vis Sci. 2000;41:1186-91.
- 24. Kato A, Kimura H, Okabe K, Okabe J, Kunou N, Ogura Y. Feasibility of drug delivery to the posterior pole of the rabbit eye with an episcleral implant. Invest Ophthalmol Vis Sci. 2004:45:238-44
- 25. Bonini-Filho MA, Jorge R, Barbosa JC, Calucci D, Cardillo JA, Costa RA. Intravitreal injection versus sub-Tenon's infusion of triamcinolone acetonide for refractory diabetic macular edema: a randomized clinical trial. Invest Ophthalmol Vis Sci. 2005;46:3845-9.
- 26. Cardillo JA, Melo LA, Jr., Costa RA, et al. Comparison of intravitreal versus posterior sub-Tenon's capsule injection of triamcinolone acetonide for diffuse diabetic macular edema. Ophthalmology. 2005;112:1557-63.
- 27. Ozdek S, Bahceci UA, Gurelik G, Hasanreisoglu B. Posterior subtenon and intravitreal triamcinolone acetonide for diabetic macular edema. J Diabetes Complications. 2006:20:246-51.
- 28. Bakri SJ, Kaiser PK. Posterior subtenon triamcinolone acetonide for refractory diabetic macular edema. Am J Ophthalmol. 2005;139:290-4.
- 29. Choi YJ, Oh IK, Oh JR, Huh K. Intravitreal versus posterior subtenon injection of triamcinolone acetonide for diabetic macular edema. Korean J Ophthalmol. 2006;20:205-9. 30. Cellini M, Pazzaglia A, Zamparini E, Leonetti P, Campos EC. Intravitreal vs. subtenon triamcinolone acetonide for the treatment of diabetic cystoid macular edema. BMC Ophthalmol, 2008:8:5.
- 31. Veritti D, Lanzetta P, Perissin L, Bandello F. Posterior juxtascleral infusion of modified triamcinolone acetonide formulation for refractory diabetic macular edema: one-year follow-up. Invest Ophthalmol Vis Sci. 2009;50:2391-7.
- 32. Borselli C, Oliviero O, Battista S, Ambrosio L, Netti PA. Induction of directional sprouting angiogenesis by matrix gradients. J Biomed Mater Res. A 2007;80:297-305.
- 33. Fialho SL, Behar-Cohen F, Silva-Cunha A. Dexamethasone-loaded poly(epsiloncaprolactone) intravitreal implants: a pilot study. Eur J Pharm Biopharm. 2008;68:637-46. 34. Hsu J. Drug delivery methods for posterior segment disease. Curr Opin Ophthalmol. 2007:18:235-9.