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AMD is a multifactorial 
disease that involves an 
ill-defined interaction 
between aging, genetics, 
and environmental factors 

that are associated with oxidative stress, inflammation, 
and impaired extracellular matrix functioning within the 
retina, predominantly at the macula. AMD classification—
traditionally tied to the presence and size of drusen and the 
presence of pigmentary changes or other signs of atrophy—
provides prognostic estimates of disease progression. Unlike 
early AMD, intermediate AMD (iAMD) has a higher progres-
sion rate to late AMD, defined as either the development of 
geographic atrophy (GA) or subfoveal macular neovascular-
ization (MNV).1 One study found that the 5-year risk of pro-
gression to advanced AMD was 0.4% for eyes without large 
drusen or pigmentary abnormalities and 47% for eyes with 
bilateral large drusen and pigmentary abnormalities.2 

GA now has a treatment option with the approval of 
pegcetacoplan (Syfovre, Apellis Pharmaceuticals). Significant 
research is underway to better understand the potential 
treatment paradigm for patients with iAMD, especially 
selecting those with high-risk imaging features for progres-
sion to late AMD.3 As such, clinicians must be able to identify 
patients with iAMD who are at a high risk for progression.

 A  N E W S T A N D A R D F O R A M D I M A G I N G 
While ophthalmoscopy and color fundus photography 

(CFP) have been the standard for the examination and 
staging in AMD, the adoption of other imaging modalities—
such as fundus autofluorescence (FAF), near-infrared imaging 
(NIR), and OCT—led the Classification of Atrophy Meeting 
(CAM) group to update the definition of the stages of AMD 
and progression. Now, multimodal imaging should be rou-
tine for proper diagnosis and prognostication of AMD. 

OCT was particularly highlighted for its ability to4:
•	 provide greater accuracy in the evaluation of the retina 

in a volumetric fashion, given the high axial resolution;
•	 allow clinicians to independently evaluate each retinal 

layer and detect early signs of pathology; 
•	 produce an en face image, which can be used to 

demarcate the borders of atrophy and directly correlate 
with other imaging modalities; 

•	 calculate related enlargement rates over time; and 
•	 provide as many scans as needed in a single visit. 

Drusen and Hyper-Reflective Foci
Various OCT imaging studies have assessed the classical 

risk factors of AMD progression rates, such as drusen burden 
and pigmentary changes (visualized on OCT as hyper-reflec-
tive foci [HRF]). They found an increased risk of progression 
with increased baseline drusen area and volume measure-
ments, as well as the presence of HRF.2,5,6

Abdelfattah et al found that eyes with a drusen volume of 
at least 0.03 mm3 had a four-fold increased risk of developing 
MNV or GA within 2 years, while Christenbury et al found 
a five-fold increased risk of developing GA within 2 years in 
eyes with HRF compared with eyes without baseline HRF.7,8 

Reticular Pseudodrusen and Calcified Drusen
Reticular pseudodrusen (RPD), also known as subretinal 

drusenoid deposits, are commonly found in the superior 
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regions of the macula and represent an increased risk of 
AMD progression.9-12 Chan et al found that the prevalence 
of RPD (best imaged with NIR imaging) varied with AMD 
staging, with the highest prevalence in eyes with iAMD 
(62.6%).11 Furthermore, Zweifel et al showed that the 
presence of RPD was associated with a nearly three-fold 
increased risk of progression to late AMD.12 

Calcified drusen (CaD) are prevalent in iAMD and are of 
high prognostic value for the development of late AMD.13-16 
Tan et al found that heterogeneous internal reflectivity within 
drusen (caused by multilobular nodules of crystalline calcium 
phosphate) was present in 45% of eyes with iAMD and was 
associated with the development of late AMD within 1 year 
(odds ratio: 6.36).16 Liu et al found that 42.7% of eyes with 
iAMD had CaD, and the majority of CaD develop into areas 
of GA, regardless of the exact B-scan appearance.13 Thus, CaD 
should be accounted for in AMD risk assessment.

Defining Atrophy on OCT
Because GA was originally defined on CFP, the CAM 

group developed new nomenclature to classify AMD-related 
atrophy on OCT: incomplete retinal pigment epithelium 
(RPE) and outer retinal atrophy (iRORA) and complete 
RPE and outer retinal atrophy (cRORA, Figure 1). cRORA 
corresponds to an area of at least 250 µm on a single hori-
zontal B-scan showing the following:

1.	attenuation or complete loss of the RPE, alongside 
2.	a corresponding hyper-transmission defect (hyperTD) 

through the area of RPE change, and 
3.	signs of photoreceptor degeneration, such as subsidence 

of the inner nuclear layer (INL) or the outer plexiform 
layer; thinning of the outer nuclear layer; presence of a 
hyporeflective wedge in the Henle fiber layer; or disrup-
tion of the external limiting membrane (ELM) or ellip-
soid zone (EZ), all in the absence of an RPE tear. 

iRORA refers to a horizontal B-scan area that has some, 
but not all, of the features of cRORA (Figures 2 and 3).4,17

Researchers are working to determine the utility of identi-
fying iRORA lesions and assessing their risk of progression to 
cRORA on OCT and/or GA on CFP. 

Although there is some variability in stratifying the risk 
of progression, iRORA features imply an enhanced risk of 
progression to cRORA. For example, Corradetti et al found 
that approximately 93% of iRORA lesions converted to 
cRORA within 24 months, while Wu et al found that iRORA 
lesions convert to GA on CFP at a rate of about 3% by 
24 months and 10% by 30 months.18,19 

Another OCT precursor to GA is nascent GA (nGA), 
which is defined as having a hyporeflective wedge in the 
Henle fiber layer and/or subsidence of the INL and outer 
plexiform layer with or without RPE or hyperTDs; Wu et al 
found that nGA had a much higher conversion rate to GA 
on CFP than iRORA within 24 months (38% vs 3%).19,20 

Atrophy can be seen much earlier on OCT than on CFP, 
and nGA has more specific criteria than iRORA. Therefore, 
these findings show that iRORA will convert to cRORA 
(ie, true irreversible retinal atrophy) in a relatively short time 
but may remain undetected on CFP until much later.

In addition, iRORA may signify that irreversible functional 
damage has already occurred (ie, iRORA and related visual 
changes may be clinically similar to cRORA and related visual 
changes). Trivizki et al showed that many cRORA lesions 
are miscategorized as iRORA because the iRORA diagnostic 
criteria fail to incorporate all dimensions of atrophic lesions; 
the atrophic area would meet cRORA criteria if vertical and 
diagonal B-scans were evaluated with the horizontal B-scans.21

En Face HyperTD
As an alternative to OCT-mediated iRORA/cRORA, 

hyperTDs into the choroidal layer—seen as bright areas on 
en face OCT images positioned in the sub-RPE segmentation 

Figure 1. NIR imaging (A) and an OCT B-scan of a cRORA lesion (B) show disruption of the ELM 
and EZ (blue arrows) and regions of RPE attenuation (red arrows) with associated hyperTDs 
into the choroid (yellow arrows). There are areas of photoreceptor degeneration (orange 
arrows) and an incidental degenerative cyst (green arrow).

Figure 2. NIR imaging (A) and an OCT B-scan of an iRORA lesion (B) show disruption of the 
ELM and EZ (blue arrow) and subsidence of the INL (orange arrow).

Figure 3. NIR imaging (A) and an OCT B-scan of an iRORA lesion (B) show disruption of the 
ELM and EZ (blue arrow) and focal attenuation of the RPE (red arrow) with associated 
hyperTDs into the choroid (yellow arrow).
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with borders from 64 µm to 400 µm under Bruch mem-
brane—provide a reliable, reproducible, and independent 
feature and risk factor for GA.22-24 Compared with iRORA/
cRORA grading criteria, the grading of hyperTDs via en face 
images allows for: a lesion’s greatest linear dimension (GLD) 
to be measured in any vector (not only horizontally); direct 
visual comparison with other AMD imaging modalities, such 
as CFP, NIR, and FAF; and a rapid assessment of the entire 
scan region. Studies show that hyperTDs with a GLD of at 
least 250 µm will likely persist for at least 3 years, correlate 
strongly with nGA (79%), and signify an 80-fold risk of the 
formation of cRORA within 3 years. While hyperTDs of 
smaller sizes were found to be transient and not as highly 
correlated to developing atrophy, they may still signify areas 
of at-risk RPE, as the areas may qualify as iRORA.23,24 

 R I S K A S S E S S M E N T A F T E R G A 
Once iRORA/cRORA, nGA, or hyperTDs form in an eye, 

more lesions are likely to develop in the same eye and the 
fellow eye. Additionally, once GA develops on OCT and/or 
CFP, certain characteristics (ie, larger lesions, multifocality, 
and an extrafoveal location) are associated with increased 
growth rates.25-30 Notably, although sub-foveal GA lesions 
can correlate with large drops in visual acuity, visual function 
is decreasing before foveal involvement is diagnosed, and 
there is a large variation in visual acuity even when imaging 
suggests highly affected visual acuity. Therefore, visual acuity 
is not a reliable tracker of disease severity.30,31 

Finally, as the CAM group recommended, multimodal 
imaging such as FAF can provide additional risk-assessment 
information. While GA corresponds to hypoautofluores-
cence, GA growth rates differ depending on the extent and 
pattern of hyperautofluorescence. Absence of hyperautofluo-
resence or focal patterns of hyperautofluorescence relate to 
slow GA growth rates (0.38 to 0.81 mm2/year), diffuse and 
banded patterns have greater than double the growth rates 
(1.77 to 1.81 mm2/year), and the “diffuse-trickling” subtype 
pattern has the highest growth rate (3.02 mm2/year).32 
Additionally, the extent of hyperautofluorescence 
surrounding GA lesions, representing at-risk RPE, positively 
correlates with GA growth rates on a per lesion basis.33 

Our understanding of the presence and characteristics of 
drusen, CaD, HRF, RPD, iRORA/cRORA, nGA, and hyperTDs 
and the risks associated with these imaging findings are clini-
cally relevant in determining which patients will benefit the 
most from early treatment.  n
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