WHEN TO USE STEROIDS FOR RETINAL VEIN OCCLUSION

Early, late, or never?

BY MARCELO ZAS, MD, PhD

Retinal vein occlusion (RVO) is the second most common retinal vascular disorder after diabetic retinopathy (DR).1-5 It can result in vision impairment or blindness if left untreated. Estimates are that 16 million people worldwide are affected by RVO in one or both eyes, and the incidence of RVO is approximately 520 new cases per 1 million annually.¹⁻⁵

The risk of RVO markedly increases with age, with the disease typically occurring in patients older than 50 years. 1-5

This article reviews current treatment strategies for RVO with steroids, the mechanisms of action of these drugs, and the rationale for their use in the two major entities of RVO presentation: branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO).

BRVO

BRVO (Figures 1 through 3) is more frequent in men than women, with a ratio of 1.2:1.6. In the United States, the 5-year incidence of BRVO is 0.6%; at 15 years, the incidence is 1.8%.4 In fact, its incidence is generally higher

- · If left untreated, RVO can result in vision impairment or blindness.
- · In the early stage of RVO there are changes in blood flow and to the dynamics of circulation, which generate the release of inflammatory mediators.
- · There is no single therapy for all subtypes of RVO. Current treatment centers on prompt control of the inflammatory cascade and avoidance of the potential complications of ME.
- Approved pharmacologic therapy may be considered a first-line option for ME due to BRVO and CRVO.

than that of CRVO.⁴ It can present in one of two locations: superotemporal (66%) or inferotemporal (30%).6 In 7% of cases, the fellow eye can become involved within 4 years.^{7,8}

The natural history of BRVO can be benign; in approximately 55% of cases, final visual acuity is 20/40 or better without treatment. However, depending on three factors location and extent of the occlusion, integrity of arterial perfusion, and collateral circulation—complications such as macular edema (ME) and neovascularization can appear in 60% and 25% of cases, respectively.

Figure 1. Acute superotemporal BRVO, left eye.

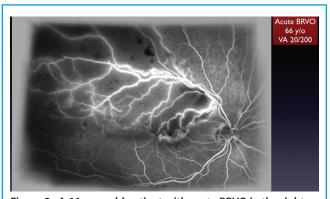


Figure 2. A 66-year-old patient with acute BRVO in the right eye; FA shows capillary closure.

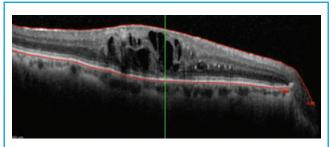


Figure 3. Same patient as seen in Figure 2. OCT shows cystoid macular edema. Visual acuity is 20/200.

CRVO

CRVO (Figures 4 and 5) is less frequent than BRVO, but it can be more severe, with a greater risk of serious complications and vision impairment. Causes can be local (glaucoma), and/or systemic (hematologic abnormalities such as hypercoagulability, among others). The incidence of CRVO is eight per 10,000 per year.^{9,10}

CRVO can take different clinical forms. Nonischemic or venous stasis CRVO (65% of cases) has a 5% risk of associated neovascularization and neovascular glaucoma. Ischemic or hemorrhagic CRVO (30% of cases) has a 40% to 85% risk of associated neovascularization and neovascular glaucoma. CRVO of undetermined cause occurs in 5% of cases, and conversion from nonischemic to ischemic CRVO occurs in 30% of cases.⁷⁻⁹

In some cases, functional tests such as visual acuity, visual field, afferent pupillary defect assessment, and electroretinography, or anatomic tests such as retinal examination and fluorescein angiography (FA) can help to distinguish the clinical form of CRVO.

PATHOPHYSIOLOGY

In the early stage of RVO there are changes in blood flow and in the dynamics of circulation. This generates the release of inflammatory mediators such as interleukin (IL)-1, IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1), VEGF, and intracellular adhesion molecule-1 (ICAM -1), causing an increase in vascular permeability, leukocyte infiltration, and tissue remodeling. In the tissues that are the substrate of the inflammation, endothelial malfunction and the development of edema occur. ME can undergo acute or chronic evolution.¹¹

MANAGEMENT OF RVO

There is no single therapy for all subtypes of RVO. Current treatment of RVO centers on prompt control of the inflammatory cascade and avoidance of the potential complications of ME, which can include permanent retinal damage and irreversible vision loss due to cystic degeneration, lamellar macular hole formation, and

Figure 4. Fundus photo of a 70-year-old patient with acute CRVO in the right eye. Visual acuity was 20/200.

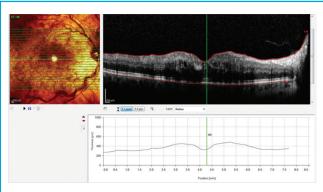


Figure 5. Same patient as seen in Figure 4. OCT shows cystoid macular edema.

epiretinal membrane formation and retinal atrophy. ¹² As a consequence, prompt treatment of ME is called for. Four options are available: watchful waiting (ie, observation), pharmacologic therapies, laser photocoagulation, and surgery.

Among pharmacologic therapies, two classes of drug are in common use: anti-VEGF agents and steroids. In comparison with anti-VEGF agents, steroids have the advantage of targeting the three components of the pathophysiology of RVO. They reduce ME through inhibition of multiple inflammatory mediators (in addition to VEGF), they stabilize the blood-retina barrier, and they decrease vascular permeability and edema (Table).

In the real world of clinical retina, there are three options for steroid treatment of RVO: triamcinolone acetonide, dexamethasone, and fluocinolone acetonide.

Triamcinolone Acetonide

Triamcinolone acetonide bolus intravitreal injection is an off-label use of triamcinolone. The optimal dose is unknown. Intravitreal injection of triamcinolone is known to be associated with development of increased intraocular pressure and cataract, and repeated treatment is needed to maintain efficacy.^{22,23}

Dexamethasone

The efficacy of the dexamethasone intravitreal implant 0.7 mg (Ozurdex, Allergan) lasts for up to 6 months. It is approved for treatment of ME secondary to BRVO or CRVO by regulators in the European Union, the United States, and other countries worldwide. This implant offers a potent corticosteroid therapy that suppresses inflammation, an important event in the pathophysiology of RVO, by inhibiting key inflammatory mediators that are associated with disease severity. Multiple prospective and retrospective studies have described the morphologic and functional results with the implant, in combination or as monotherapy, and have evaluated the safety and efficacy of this treatment for RVO.5,24-30

Fluocinolone Acetonide

The fluocinolone acetonide intravitreal implant 0.19 mg (Iluvien, Alimera Sciences) is approved by the US Food and Drug Administration for the treatment of diabetic ME, not for ME secondary to RVO. Its use for RVO is an off-label indication.

RVO TREATMENT TIPS: CUSTOMIZE AND DELIVER EARLY

Treatment for RVO must be individualized because there is interindividual variability in presentation. Current treatment for ME secondary to RVO is aimed at the prompt control of the inflammatory cascade and avoidance of

Treatment for RVO must be individualized because there is interindividual variability in presentation.

potential complications. The goal of RVO management is to reduce retinal complications while improving patients' vision and quality of life.

Among the available steroid therapies for RVO, dexamethasone has been shown to lead to significant improvement in BCVA in patients with ME associated with RVO, with similar results in both BRVO and CRVO. Earlier treatment is associated with better visual acuity outcome and is well tolerated. Increases in intraocular pressure return to baseline by 6 months and 1 year, and side effects are similar after a second injection.

Approved pharmacologic therapy may therefore be considered a first-line option for ME due to BRVO and CRVO. Use of the dexamethasone intravitreal implant reduces the number of injections needed when compared with anti-VEGF injections, and it addresses the ME in RVO through multiple mechanisms of action.

TABLE: COMPARISON OF THE MECHANISMS OF ACTION OF STEROIDS AND ANTI-VEGF AGENTS

Inflammatory Mediator	Physiologic Role	Steroids Inhibit? (Y/N) ^{19,20}	Anti-VEGF Agents Inhibit? (Y/N) ²¹
ICAM-1	Increased vascular permeability ¹³	Υ	N
MCP-1	Increased vascular permeability, altered tight junctions, ¹⁴ increased cell recruitment ¹⁵	Υ	N
VEGF	Increased vascular permeability ¹⁶	Υ	Υ
IL-6	Potentially increased vascular permeability ¹⁷	Υ	N
IL-8	Increased vascular permeability, ¹⁴ stimulation of inflammatory proteins ¹⁵	Υ	N
TNF-alpha	Increased vascular permeability ¹⁸	Υ	N

Abbreviations: ICAM-1, intracellular adhesion molecule-1; IL, interleukin; MCP-1, monocyte chemoattractant protein-1; N, no; TNF, tumor necrosis factor; Y, yes

- 1. Royal College of Ophthalmologists. Guidelines for Retinal Vein Occlusion. London: Royal College of Ophthalmolo-
- 2. Klein R, Klein BE, Moss SE, Meuer SM. The epidemiology of retinal vein occlusion: the Beaver Dam Eye Study. Trans Am Onhthalmol Soc. 2000:98:133-141.
- 3. Rehak J, Rehak M. Branch retinal vein occlusion: pathogenesis, visual prognosis and treatment modalities. Curr Eye Res. 2008;33(2):111-131.
- 4. Laouri M, Chen E, Looman M, Gallagher M. The burden of disease of retinal vein occlusion: review of the literature. Eye (Lond). 2011;25(8):981-988
- 5. Sivaprasad S, Oyetunde S. Impact of injection therapy on retinal patients with diabetic macular edema or retinal vein occlusion. Clin Ophthalmol. 2016;10:939-946.
- 6. Lang GE, Freissler K. Clinical and fluorescein angiography findings in patients with retinal vein occlusion. A unicenter study of 211 patients. Klin Monbl Augenheilkd. 1992;201(4):234-239.
- 7. Hayreh. SS. Ocular vascular occlusive disorders: natural history of visual outcome. Prog Retin Eye Res. 2014;41:1-25.
- 8. Hayreh SS. Retinal vein occlusion. Indian J Ophthalmol. 1994;42(3):109-132.
- 9. Hayreh SS, Podhajsky PA, Zimmerman MB. Natural history of visual outcome in central retinal vein occlusion. Ophthalmology. 2011;118(1):119-133.
- 10. Patel A, Nguyen C, Lu S. Central retinal vein occlusion: a review of current evidence-based treatment options. Middle East Afr J Ophthalmol. 2016;23(1):44-48.
- 11. Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res. 2007;2007:95103.
- 12. Tsukada K, Tsujikawa A, Murakami T, Ogino K, Yoshimura N. Lamellar macular hole formation in chronic cystoid macular edema associated with retinal vein occlusion. Jpn J Ophthalmol. 2011;55(5):506-513.
- 13. Noma H, Funatsu H, Harino S, Mimura T, Eguchi S, Hori S. Vitreous inflammatory factors in macular edema with central retinal vein occlusion. Jpn J Ophthalmol. 2011;55(3):248-255.
- 14. Fonollosa A, Garcia-Arumi J, Santos E, et al. Vitreous levels of interleukine-8 and monocyte chemoattractant protein-1 in macular oedema with branch retinal vein occlusion. Eye (Lond). 2010;24(7):1284-1290.
- 15. Funk M, Kriechbaum K, Prager F, et al. Intraocular concentrations of growth factors and cytokines in retinal vein occlusion and the effect of therapy with bevacizumab. Invest Ophthalmol Vis Sci. 2009;50(3):1025-1032.
- 16. Ramchandran RS, Shuler RK, Fekrat S. Treatment of retinal vein occlusions. In: Holz FG, Spade RF, eds. Medical Retina: Essentials in Ophthalmology. Heidelberg: Springer; 2007:147-163.
- 17. Funatsu H, Noma H, Mimura T, Eguchi S. Vitreous inflammatory factors and macular oedema. Br J Ophthalmol.
- 18. Kachi S, Kobayashi K, Ushida H, Ito Y, Kondo M, Terasaki H. Regression of macular edema secondary to branch retinal vein occlusion during anti-TNF-alpha therapy for rheumatoid arthritis. Clin Ophthalmol. 2010;4:667-670.
- 19. Nehmé A, Edelman J. Dexamethasone inhibits high glucose-, TNF-alpha-, and IL-1beta-induced secretion of inflammatory and angiogenic mediators from retinal microvascular pericytes. Invest Ophthalmol Vis Sci. 2008:49(5):2030-2038
- 20. Joyce DA, Kloda A, Steer JH. Dexamethasone suppresses release of soluble TNF receptors by human monocytes concurrently with TNF-alpha suppression. Immunol Cell Biol. 1997;75(4):345-350.
- 21. Hoerauf H. Branch retinal vein occlusion. In: Joussen AM, Gardner TW, Kirchhof B, Ryan SJ, eds. Retinal Vascular Disease. Heidelberg: Springer-Verlag; 2007:467-506
- 22. Scott IU, VanVeldhuisen PC, Oden NL, et al; SCORE Study Investigator Group. SCORE Study report 1: baseline associations between central retinal thickness and visual acuity in patients with retinal vein occlusion. Ophthalmology. 2009:116(3):504-512.
- 23. Scott IU, Blodi BA, Ip MS, et al; SCORE Study Investigator Group. SCORE Study Report 2: Interobserver agreement between investigator and reading center classification of retinal vein occlusion type. Ophthalmology. 2009:116(4):756-761
- 24. Parodi MB, Iacono P, Petruzzi G, Parravano M, Varano M, Bandello F. Dexamethasone implant for macular edema secondary to ischemic retinal vein occlusions. Retina. 2015;35(7):1387-1392.
- 25. Dugel PU, Capone A Jr, Singer MA, et al; SHASTA Study Group. Two or more dexamethasone intravitreal implants in treatment-naïve patients with macular edema due to retinal vein occlusion; subgroup analysis of a retrospective chart review study. BMC Ophthalmol. 2015;15:118.
- 26. Ozkok A, Saleh OA, Sigford DK, Heroman JW, Schaal S. THE OMAR STUDY: Comparison of Ozurdex and triamcinolone acetonide for refractory cystoid macular edema in retinal vein occlusion. Retina. 2015;35(7):1393-1400.
- 27. Ho M, Liu DT, Lam DS, Jonas JB. Retinal vein occlusions, from basics to the latest treatment. Retina. 2016:36(3):432-448.
- 28. Sawada O, Ohji M. Retinal vein occlusion. Dev Ophthalmol. 2016;55:147-153.
- 29. Bakri SJ, Omar AF, lezzi R, Kapoor KG. Evaluation of multiple dexamethasone intravitreal implants in patients with macular edema associated with retinal vein occlusion. Retina. 2016;36(3):552-557.
- 30. Bandello F, Parravano M, Cavallero E, et al. Prospective evaluation of morphological and functional changes after repeated intravitreal dexamethasone implant (Ozurdex) for retinal vein occlusion. Ophthalmic Res. 2015;53(4):207-216.

Marcelo Zas, MD, PhD

- associate professor of ophthalmology and head of the retina department at Hospital de Clínicas, School of Medicine, University of Buenos Aires, in Buenos Aires, Argentina
- financial interest: none acknowledged
- marcezas@gmail.com; www.zasmarcelo.com