PREDICTING GEOGRAPHIC
ATROPHY GROWTH WITH

SD-OCT

The ability to identify ideal treatment candidates could speed clinical trials.

BY THEODORE LENG, MD, MS

Approximately half of eyes with advanced
age-related macular degeneration (AMD)
have geographic atrophy (GA)."? In patients
older than 75 years, GA is the principal
cause of severe vision loss.? Fortunately, GA
often begins outside of the fovea,* and cen-
tral functional areas of vision are often not
affected until late in the disease process.
Given the slowly progressive nature of dry AMD with GA,
ophthalmologists have an opportunity to preserve vision in
these patients. If we could prevent the spread of GA to the
center of the fovea, many patients would ultimately end
up happier. With the recent success of early clinical trials of
pharmacologic agents and cell-based therapies,® the ability
to intervene may not be too far in the future. So, if we will
soon have the power to prevent the growth of GA, to whom
should we offer treatment?

IDENTIFYING IDEAL CANDIDATES

When a new treatment emerges, one should select a few
ideal candidates—patients whom one is sure will benefit
from the treatment—before casting a wider net and trying it
on everyone who might benefit from the therapy. There are
two reasons for this. First, if there are unknown side effects of
a new treatment that were not uncovered during clinical tri-
als, it would be undesirable for many or all of your patients
with GA to be affected by them. Second, you want to have
a few “wins” early on to boost your confidence in the effi-
cacy of a new product, so you can continue to use it when
indicated. In addition, if you can identify those most likely
to benefit—in this case, those most likely to experience GA
progression and loss of vision—then you can use that infor-
mation to help counsel potential treatment candidates and
explain to them why they might benefit from the therapy.

Lampalizumab (Genentech) is an antigen-binding frag-
ment of a humanized monoclonal antibody directed against
complement factor D. This large molecule is currently being
evaluated in two identical phase 3 trials in patients with

GA: Spectri (NCT02247531) and Chroma (NCT02247479).
The completion date is November 2017 for Spectri and
September 2018 for Chroma. If approved, lampalizumab
would potentially be the first treatment for GA approved by
the US Food and Drug Administration.

When that day comes, to whom should we first administer
treatment? | believe that the ideal candidate would be someone
we think is at high risk of losing central vision due to the spread
and growth of GA. This patient would be the most likely to
benefit from this intravitreal therapy and the most likely to
agree to a treatment meant to be preventive in nature.

QUANTITATIVE IMAGING ANALYSIS

Previous studies have shown that the presence of drusen,
hyperpigmentation, and reticular pseudodrusen on infrared
reflectance images are qualitative risk factors for GA progres-
sion.*¢7 Spectral-domain optical coherence tomography
(SD-OCT) studies have also shown that subretinal drusenoid
deposits and abnormalities in the retinal pigment epithelium
(RPE) and photoreceptors at the margins of GA may be
associated with GA growth.2? While these imaging studies
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In patients older than 75 years, GA is the principal
cause of severe vision loss.

- With the recent success of early clinical trials of
pharmacologic agents and cell-based therapies,
the ability to intervene in GA may be not too far
in the future.

- Patients who are at high risk of GA progression
and of movement of that GA into the foveal
center would be ideal candidates for emerging
therapies for GA.
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have given us helpful insights into the progression of dry
AMD with GA, none of them describe a method to reliably
predict where GA is likely to spread and what the pattern of
growth will be over a specified time span.

In a recent study,'® we harnessed the massive amount of
data contained in volume SD-OCT scans of the macula (more
than 67 million voxels per scan) to create a fully automated
algorithm that can quantitatively and accurately identify
macular regions where GA is likely to grow. Moreover, the
computer model was able to predict if and when the foveal
center was likely to be affected by GA—an important clinical
issue, as involvement of the foveal center often leads to a pre-
cipitous drop in visual acuity and visual function.

A PREDICTIVE MODEL

In our study, 118 longitudinal SD-OCT volume scans
from 38 eyes with GA were used to develop a computer
algorithm. A fully automated pipeline was developed to
segment the scans, extract imaging features, create a predic-
tive model for GA progression, and test that model using a
machine learning approach.

We fed the ground truth about 19 imaging features and
regions of GA growth into the model to train it in a pixel-
by-pixel fashion. We then tested the ability of the model to
predict areas of GA growth in a separate set of data in which
the truth was hidden from the model.

We created a two-class classification problem for the artifi-
cial intelligence model, asking it to predict whether each pixel
in a topographic image was a future GA or non-GA region.

INFLUENTIAL FEATURES

When the 19 quantitative SD-OCT features were ranked
on their predictive ability to identify regions of future GA
growth, we found that the most important features were
regions of photoreceptor loss, lower reflectivity of OCT
band 11, and the height of reticular pseudodrusen. Other
influential features included intensity of the GA projec-
tion image, retinal thickness between the outer boundary
of OCT band 5 and inner boundary of OCT band 11, average
intensity between outer boundary of OCT band 7 and
inner boundary of OCT band 11, and eccentricity of the
existing GA.

Using these features, we were able to predict regions of
future GA growth in several testing scenarios with sensitivity
ranging from 0.81 to 0.90 and specificity ranging from 0.95 to
0.97, depending on which one of three testing scenarios was
used. The area under the receiver operating curve for GA
classification was 0.97, with positive predictive values ranging
from 0.83 to 0.86 and negative predictive values from 0.96 to
0.97. Correlation coefficients of future GA areas to predic-
tions ranged from 0.97 to 0.99.

Importantly, the ability of our automated algorithm to
predict foveal GA involvement had a high level of perfor-
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Figure. GA OCT projection image, with baseline GA outlined
in white and predicted GA growth outlined in blue, based on
a fully automated prediction model.

mance, with correlation coefficients ranging from 0.94 to
0.95 in the various testing scenarios.

Overall, we found the computer model to be quite robust
in predicting areas of future GA growth and whether that
growth would involve the foveal center (Figure).

PUTTING IT ALL TOGETHER

Our algorithm potentially gives us the ability to identify
patients who are at high risk of GA progression and of
movement of that GA into the foveal center. These patients
at risk for vision loss would be ideal candidates for emerging
therapies for GA.

Moreover, future GA trials could be designed around these
features. If high-risk patients can be recruited into clinical
trials, that could potentially shorten trial times and decrease
the sample sizes necessary to reach statistical significance in
demonstrating the efficacy and safety of a fledgling investiga-
tional product. Ultimately, our patients will benefit. m
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also for neurodegenerative and cardiovascular diseases,
cancers, diabetes, and obesity. Mitochondria are becom-
ing the targets for an entire new field of drug develop-
ment. The future will likely include clinical trials using
mitochondria-targeting drugs for retinal diseases, and
this will be an exciting, novel area of research with great
therapeutic potential. B
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GA affects more than

5 million people world-
wide," including almost

1 million Americans.”

For patients with advanced AMD
(neovascular AMD or GA
involving the center of the
macula) in one eye, the

risk of progression to an
advanced stage in the fel-

low eye ranged from 35% to 50% at 5 years.’

0f patients with GA,
42% are legally blind.”
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