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Visualizing the
Outflow Pathway

Future advances in OCT may make it possible to evaluate the functionality of the collector system.

BY LARRY KAGEMANN, PuD, AND JOEL S. SCHUMAN, MD

arallel advances in optical coherence tomogra-

phy (OCT) imaging hardware and the sophisti-

cation of applied computer vision techniques

to OCT imagery have expanded the modality’s
application in ophthalmology. Since its early use for
the assessment of the retinal nerve fiber layer, OCT has
been a means of quantifying the structural changes
associated with age-related macular degeneration, dia-
betic retinopathy, and retinitis pigmentosa.’®

Having demonstrated OCT's ability to visualize the

lamina cribrosa (LC),” we recently published a technique
for automated segmentation of the LC (Figure 1).57° As
opposed to evaluating the complex anatomy of the lim-
bus, LC analysis is relatively straightforward. On OCT, LC
tissue presents as either pores, which actually contain
nerve fiber bundles with poor reflectance due to their
orientation, or as collagen beams. Defining the border
between the two remains nuanced, however, and much
work still needs to be done before implementation in
clinical devices.

“Unlike cadaveric tissue, in which
a minimal number of outflow
pathways were open, the living
eye has a greater density of
patent aqueous vessels.”

CHALLENGES

Segmentation of the outflow pathway within the lim-
bus presents a complex challenge. Pilot work in a donor
eye perfusion model (Bioptigen OCT [Bioptigen], 200-nm
bandwidth light source [SuperLum], 10-second image
acquisition time) allowed visualization of the primary
aqueous humor outflow pathway." Only outflow path-
ways were open; other structures within the cadaveric
tissue had collapsed. The outflow pathways presented as
hyporeflective regions on OCT scans,
because mock aqueous solution pro-
vided little or no signal. In these tissues,
automated segmentation was similar
to that in the LG specifically, image
content represented either reflective
tissues surrounding the outflow system
or the hyporeflective openings of the
outflow system itself (Figure 2).

Unlike cadaveric tissue, in which
a minimal number of outflow path-
ways were open (Figure 2), the living

Figure 1. Tissues within the LC (A) appear as either collagen beam (light) or pores  eye has a greater density of patent
(dark), facilitating automated segmentation (B) and allowing three-dimensional aqueous vessels (Figures 3 and 4).

(3-D) visualization of the collagen structure (C).

Living tissue presents with both
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Figure 2. Visualization of open aqueous outflow pathway
structures in the limbus of a donor eye in a perfusion model.
An OCT scan (top) may be enhanced (center, aqueous path-
ways shown by arrows). The few pathways opened by out-
flow in a donor eye may be observed in 3-D (bottom).

Coronal View

active blood and aqueous vessels. Moreover, not all
visible pathways within the limbus are necessarily col-
lector channels or aqueous veins (Figure 3). Imposing a
connectivity criterion on the segmentation would seem
to be a viable way to isolate the aqueous pathway, but
shadows cast by superficial blood vessels provide dark
vertical artifacts within the images, creating false con-
nections between various internal pathways (Figure 3).

Higher-density scanning patterns available on experi-
mental systems improve the visualization of outflow struc-
tures, but obscuration by noise and other vessels reduces
the clinical utility of the best imaging of the outflow
systems currently available. Noise suppression techniques
improve the visualization of outflow structure but at a cost.
Specifically, fine detail within the network of the outflow
vasculature is lost when noise is suppressed (Figures 3 and
4). Commercially available systems can scan the limbus
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Figure 3. In a living eye, far more aqueous pathways are
open, observable from Schlemm canal through the numer-
ous aqueous vessels (top); 3-D visualization shows a dense
and overlapping outflow vasculature (bottom).

relatively quickly (Cirrus HD-OCT [Carl Zeiss Meditec],
anterior segment 512 x 128-scan, 2-second acquisition
time), providing visualization of the limbus for 3-D recon-
structions of the outflow system. The lower scan density,
however, produces less complete visualization of the aque-
ous outflow structures (Figure 5).

Future systems may compensate for these limita-
tions. For example, the spectral signature of blood
may be used to identify blood vessels within the scan.
The absorption characteristics of hemoglobin may be
used to discern blood from aqueous outflow vessels.’
Furthermore, the automated identification of blood
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Coronal View

Figure 4. After the reduction of background clutter, the
network of outflow vessels can be observed in 3-D space,
visualizing the multilayered organization with connecting
vessels between (right).

Sagittal View

Figure 5. Unlike the experimental system sampling tissue
with 512 x 512 A-scans, commercially available systems do

not sample with sufficient A-scan density to create 3-D visu-
alization of the same quality. Here, the outflow vasculature
of a living eye was isolated from a typical 512 x 128 anterior
segment scan using the Cirrus HD-OCT.

vessels’ shadows, based on their characteristic verti-

cal presentation, may allow localized enhancement in
shadowed regions. This technique could recover image
information and remove the shadow artifact that limits
the application of connectivity requirements in the seg-
mentation of the aqueous outflow vascular system.'>4

CONCLUSION

Work using cadaveric outflow models has provided
pilot data demonstrating that the 3-D network of the
outflow pathway can be discerned from the surrounding
tissue. Clinically, this pathway can be subjectively followed
by interrogating the image stack that makes up an OCT
volumetric scan. To date, however, numerous sources of
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noise and competing vessels within the limbus region have
thwarted attempts to automatically isolate and visualize
the outflow pathway in living eyes. Advances in shadow
suppression and the identification of blood within the
spectral signature of OCT scan data may lead to a clinically
viable automated solution to visualizing the outflow path-
way in the near future. B
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