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Sometimes, I envy my retinal colleagues for 
the remarkable advances that have emerged 
over the past decade in targeted therapy for 
proliferative vascular diseases. By interrupting 
the molecular cascade triggered by vascular 

endothelial growth factor, these therapies have provided 
an elegant treatment with few complications and side 
effects relative to the laser therapies that, while effective, 
destroyed both tissue and sight. The development of these 
drug treatments required careful basic research to eluci-
date the pathogenesis of disease and the molecular path-
ways involved to discover the targets for therapy.
Perhaps hope is on the horizon for glaucoma treatment. 
The work of investigators such as Douglas Rhee, MD, and 
his colleagues may help us understand why primary open-
angle glaucoma (POAG) develops at a molecular level. Their 
cutting-edge research on secreted protein acidic and rich 
in cysteine (SPARC), a glycoprotein found in the trabecular 
meshwork (TM) that appears to be important in extra-
cellular matrix (ECM) turnover and IOP regulation, may 
expose a key to the pathogenesis of POAG. This understand-
ing could reveal molecular targets for therapy. One day, I 

hope that we will be able to treat the underlying cause of 
increased resistance to outflow and elevated IOP instead of 
just trying one more technique to make a bypass hole in the 
eye. This month’s “Peer Review” column describes the work 
of Dr. Rhee and his colleagues. Let us all hope they succeed! 
—Barbara Smit, MD, PhD, section editor

E
levated IOP in eyes with POAG is caused by poor 
aqueous humor drainage and can lead to visual field 
loss due to progressive optic nerve damage.1 The 
only rigorously proven treatment for POAG is to 

lower IOP.2,3 Thus far, single gene mutations account for 
less than 10% of POAG cases, with the other 90% likely 
having polygenic origins.4 Elucidating the molecular under-
pinnings of IOP regulation is crucial to the quest for new 
therapeutic targets. We believe that rigorous investigation 
of aberrant tissue remodeling and outflow resistance in 
the TM will yield new treatment targets that will directly 
interrupt the glaucomatous disease process.

Anders Bill, MD, PhD, showed that 80% to 90% of aque-
ous outflow occurs through the TM, or conventional 
pathway, with the remaining 10% to 20% occurring 
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through the ciliary body face, or alternative pathway.5 The 
juxtacanalicular (JCT) region, which includes the inner 
wall of Schlemm canal and underlying JCT TM, is thought 
to be the region where the regulation of aqueous humor 
outflow takes place.6 The JCT region is an amorphous layer 
composed of endothelial cells and ECM. Under conditions 
of elevated IOP, the JCT region has the highest resistance 
to outflow.7 The JCT region is not a static structure. 
Rather, it is continuously undergoing movement, and the 
ECM within it is constantly being remodeled.   

WHY ECM and SPARC?
Primary Pathophysiologic Event in POAG  
The regulation of IOP in the JCT region is likely a com-
plex system with multiple tissue responses to compen-
sate for numerous physiologic stressors and perturba-
tions. Some processes have been shown to influence IOP 
such as the regulation of ECM homeostasis,8-13 modifica-
tions in the actin cytoskeleton and cellular tone of the 
JCT TM and inner wall of Schlemm canal cells,14 and 
changes in the number of transcellular pores through the 
inner wall of Schlemm canal cells.15

Eyes with POAG have higher amounts of ECM struc-
tures called sheath-derived (SD) plaques within the JCT 
region compared with age-matched patients without 
glaucoma. SD plaques are complex structures composed 
of elastin, collagens, and various proteoglycans. The 
increase in number of SD plaques is evident both in 
treated postmortem samples and in untreated eyes.16,17 
The observation of increased SD plaques in untreated 
eyes indicates that this finding is not the artifact of the 
long-term use of medication but likely a primary  
(ie, causative) issue. SD plaques are seen in nonglauco-
matous eyes, and they increase with age.16 The rise in SD 
plaques with glaucoma, however, suggests a pathophysi-
ologic change associated with increased resistance to 
outflow and the development of glaucoma. Furthermore, 
the composition of glycosaminoglycans in eyes with 
POAG is different than in nonglaucomatous eyes: specifi-
cally, there is a shift in the proportion of hyaluronic acid 
in nonglaucomatous eyes to chondroitin sulfate.18  

Experimental evidence shows that, in nonglaucoma-

tous eyes, altering ECM homeostasis either by increas-
ing its production or by slowing its turnover alters IOP 
and that alterations of the JCT ECM constitute primary 
pathophysiologic events. Understanding the regulation 
of ECM turnover will be critical to understanding IOP 
regulation. We therefore have focused our attention 
on the genes involved in ECM turnover to help explain 
the development of glaucoma and to look for potential 
therapeutic targets. 
 
Aberrant Tissue Remodeling in Nonocular Tissues

Matricellular proteins are nonstructural secreted glyco-
proteins that facilitate cellular control over the surround-
ing ECM. SPARC is the prototypical matricellular protein. 
It is generally associated with increased fibrosis and aber-
rant tissue remodeling processes such as those found in 
systemic sclerosis, renal interstitial fibrosis, hepatic fibrosis, 
and pulmonary fibrosis. SPARC is widely expressed in 
human ocular tissues and is produced by lenticular cells, 
retinal pigment epithelieal cells, and corneal epithelial cells 
as well as by TM and ciliary body smooth muscle cells.19,20  

Regulatory Role in IOP
We have shown that SPARC is highly expressed by 

TM cells and is present in very high levels within the 
JCT region.20 In normal TM tissue, SPARC is one of the 
most highly expressed genes.21 In TM endothelial cells, 
SPARC is one of the most highly upregulated genes in 
response to physiologic mechanical stretching, and it is 
likely important to the baseline function of the TM.22

The ability to create null or knockout mice (ie, mice 
that do not express a single or multiple gene after 
birth) has become a very powerful tool with which to 
study the functional role of a particular gene of inter-
est. We have found that SPARC-null mice have a 15% 
to 20% lower IOP than their wild-type counterparts 
as a result of increased aqueous drainage.23 We made 
this observation using mice with comparable central 
corneal thicknesses and no gross changes in the overall 
architecture of anterior chamber tissue.

We have identified two significant upstream regulators 
of SPARC, transforming growth factor-β2 (TGF-β2) and 
the microRNA family miR-29. TGF-β2 is greatly increased 
in the aqueous humor of patients with POAG compared 
with age-matched controls. Numerous studies implicate 
its role in the pathogenesis of POAG.24 We have shown 
that TGF-β2 upregulates SPARC expression in primary 
cultured human TM cells25 and that the reverse, SPARC 
modulation, has no effect on TGF-β2,26 indicating that 
SPARC lies downstream of TGF-β2. MicroRNAs are small, 
single-stranded RNAs that modulate the posttranscrip-
tional expression of genes. In particular, the miR-29 fam-

“We have shown that SPARC is 
highly expressed by TM cells and 

is present in very high levels in 
the JCT region.”
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ily is a mediator of tissue fibrosis in nonocular human 
tissues. We demonstrated that all three members of the 
miR-29 family are expressed in human TM and have an 
inhibitory effect on SPARC.27 As we learn how SPARC 
modulation affects TM ECM and IOP and the pathway 
by which SPARC is regulated, we will seek points for pos-
sible therapeutic intervention in the pathway.

FUTURE DIRECTIONS
We hope both to broaden our understanding of the 

effects of the matricellular protein family and to focus 
on the molecular mechanisms by which SPARC exerts its 
influence on the ECM and IOP. We have investigated the 
IOP of mice that do not express two other matricellular 
proteins, hevin (which shares more than 60% homology 
with SPARC) and osteopontin. Deletions of neither pro-
tein seemed to affect the IOP compared with their wild-
type counterparts.28-30 These results support our hypoth-
esis that SPARC is specifically involved in IOP regulation 
relative to other matricellular proteins.  

We have presented preliminary evidence showing that 
overexpression of SPARC by TM cells increases IOP in 
perfused human anterior segments isolated from non-
glaucomatous eyes.31 This elevation of IOP coincides 
with an increase in fibronectinas well as collagens I and 
IV within the JCT region. This effect is mediated by TM 
cells. Further work will be directed toward elucidating in 
more detail how SPARC modulates ECM homeostasis.

We are also attempting to clarify the regulatory mecha-
nisms that lie upstream of SPARC. We have presented pre-
liminary evidence identifying the specific signaling path-
ways that underlie the effects of TGF-β2 on SPARC.26,32  

Our initial work with SPARC-null mice implicates an 
increase in aqueous drainage as the physiologic mecha-
nism of the lower IOP, and we are working to clarify 
this observation. Most recently, by injecting fluorescent 
microbeads into the anterior chambers of SPARC-null 
and wild-type mice, we have found preliminary evidence 
that the transgenic deletion of SPARC results in outflow 
over a greater area of the TM than the typical segmental 
outflow.33 SPARC overexpression may somehow alter the 
distribution of outflow channels and thus change the 
cross-sectional area available for outflow.

An understanding of the molecular pathogenesis of POAG 
will be critical to researchers’ ability to devise new and more 
targeted treatment strategies in the coming years. A greater 
knowledge of matricellular protein function may help eluci-
date potential therapeutic targets for IOP reduction.  n
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