THE DARK SIDE OF **MEDICATION**

Many systemic and topical drugs can cause or worsen dry eye disease.

SARAH MARSHALL, PHD, AND ROBERT NOECKER, MD, MBA

Dry eye disease (DED) is a common ophthalmic disorder that affects a predominantly older population and is diagnosed in women twice as often as in men.^{1,2} The risk of developing DED increases in patients with

certain systemic disorders, particularly diabetes: 54% and 70% of patients with type 1 and type 2 diabetes, respectively, develop DED.³ In some patients, DED symptoms are exacerbated by topical and/or systemic medications that interfere with proper tear production or induce allergic or inflammatory responses in optical and perioptical tissues. The sensitivity of DED patients to different medications varies, and clinicians must be aware of all prescribed and over-the-counter drugs in use in order to diagnose a causative agent.

PRESERVATIVE PROBLEMS

Preservatives in multiuse eye drop bottles are a wellstudied factor in ocular surface disease. Benzalkonium chloride (BAK) is an effective detergent-type antimicrobial used in 70% of all ophthalmic medications, 4 but its utility as a preservative is offset by its toxicity to the ocular surface. Corneal and conjunctival toxicity have been demonstrated in vitro,^{5,6} while BAK's disruption of tear film production and stability has been demonstrated in vivo. 7-9 Because of the damaging effects of BAK, some medications now use gentler oxidative-type preservatives such as stabilized oxychloro complex (Purite; Allergan) or the ionic buffer system sofZia (Alcon), both of which cause less ocular surface damage and discomfort. 10,11 Other eye drops, including the glaucoma medications timolol, dorzolamide/timolol fixed combination, latanoprost, and tafluprost, as well as numerous over-the-counter artificial tears, are available in preservative-free formulations. When feasible, these medications may be the best choices for DED patients. 12-14 Second-tier alternatives are medicines containing milder, non-BAK preservatives, followed by BAK-containing options.

Glaucoma medications, while generally well tolerated, induce adverse effects that may be exacerbated in DED patients. Some of these effects may be due to the presence of BAK in certain formulations, but each class of glaucoma medication also contributes to DED symptoms directly.

PROSTAGLANDINS AND PROSTAMIDES

Prostaglandins (PGAs) and prostamides reduce IOP by increasing uveoscleral outflow, and these agents are often the first line of glaucoma treatment. PGA use increases chalazion formation and subsequent abnormalities in the tear film¹⁵ and induces conjunctival inflammation. ^{16,17} BAK-free alternatives are available for some PGAs and have fewer adverse effects.18

β-BLOCKERS

 β -blockers are competitive antagonists of β -adrenergic receptors that reduce aqueous humor production. Many β-blocker formulations contain BAK, which accounts for some of the discomfort reported from their use. However,

- In some patients, dry eye disease (DED) symptoms are exacerbated by medications that interfere with proper tear production or induce allergic or inflammatory responses in optical and perioptical tissues.
- · Preservatives in multiuse eye drop bottles such as benzalkonium chloride are toxic to the ocular surface. Some medications now use gentler oxidative-type preservatives that cause less ocular surface damage and discomfort. Other eye drops are available in preservative-free formulations.
- · Systemic medications are implicated in the aggravation of DED as well. β-blockers, angiotensinconverting enzyme inhibitors, angiotensin II receptor antagonists, and diuretics induce DED. Anticholinergics, particularly antihistamines and antidepressants, also cause adverse effects.

timolol reduces tear production and turnover more than other BAK-containing medications, 19 while nonpreserved β-blockers cause more ocular surface damage than PGAs and brimonidine,²⁰ indicating that the active ingredient promotes DED symptoms directly.

α-AGONISTS

The α -agonist brimonidine lowers IOP through the concurrent decrease of aqueous humor production and increase in uveoscleral outflow.²¹ Allergic conjunctivitis and anterior uveitis often occur following long-term use of 0.2% brimonidine drops, which are preserved with BAK.²²⁻²⁴ More recently, formulations using 0.15% and 0.1% brimonidine and the preservative Purite have been shown to lower IOP as effectively as 0.2% brimonidine, but with a reduction in ocular allergy of at least 41%.25

CARBONIC ANHYDRASE INHIBITORS

The carbonic anhydrase inhibitors dorzolamide (Trusopt; Mundipharma Ophthalmology Products) and brinzolamide (Azopt; Alcon) reduce aqueous production and are often used as adjunctive therapy in combination with other glaucoma medications. Burning or stinging during instillation are common adverse effects of dorzolamide, likely because of its low pH of 5.6.26 Less discomfort is reported with brinzolamide, which has a pH of 7.5, close to that of tears.

OPHTHALMIC ANTIBIOTICS

Ophthalmic antibiotics and over-the-counter drops, including lubricants, are often preserved with BAK or another irritating antimicrobial, chlorobutanol.²⁷ Recently, manufacturers have begun to use milder antimicrobials in artificial tears and lubricants, although BAK or chlorobutanol remains an ingredient in some. 14 Two brands of the antibiotic moxifloxacin, Vigamox and Moxeza (both from Alcon), are preservative-free.

SYSTEMIC MEDICATIONS

Systemic medications are implicated in the aggravation of DED as well, although most studies have focused on classes of drugs rather than specific medications. Antihypertensives, including β-blockers, ^{28,29} angiotensinconverting enzyme inhibitors, angiotensin II receptor antagonists,³⁰ and diuretics³¹ induce DED. Anticholinergics, particularly antihistamines and antidepressants, also cause adverse effects^{32,33}; antipsychotics are implicated because they cause dry mouth, a condition that shares a close pathophysiology with dry eye.³⁴

Exongenous estrogen plays a complex role in the regulation of DED; physiological doses ameliorate symptoms in premenopausal women, but its use in hormone replacement therapy increases risk in postmenopausal women.³⁵ Common over-the-counter analgesics such as aspirin³² and ibuprofen³⁶ cause dry eye, particularly at higher doses. Topical retinoids such as retinoic acid and isoretinoin (Accutane; Hoffmann-LaRoche) disrupt meibomian gland function and result in reduced oil production and perturbation of the tear film. 37,38

DED is a common condition that increases in prevalence with a variety of risk factors that include age, sex, and diabetes. Interplay of these factors with the use of any of a number of medications can aggravate symptoms; in fact, concurrent use of five or more prescription or overthe-counter drugs may itself be a risk factor.³⁴ The role of medications in exacerbating symptoms in DED patients is complex and variable. It is therefore important to consider all medications used by a patient when developing a treatment plan to address DED.

- 1. Schaumberg DA, Sullivan DA, Buring JE, Dana MR. Prevalence of dry eye syndrome among US women. Am J Ophthalmol. 2003;136(2):318-326.
- 2. Schaumberg DA, Dana R, Buring JE, Sullivan DA. Prevalence of dry eye disease among US men: estimates from the physicians' health studies. Arch Ophthalmol. 2009;127(6):763-768.
- 3. Manaviat MR, Rashidi MA, Afkhami-Ardekani M, Shoja MR. Prevalence of dry eye syndrome and diabetic retinopathy in type 2 diabetic patients. [published online ahead of print June 2, 2008]. BMC Ophthalmol. doi: 10.1186/1471-2415-8-10.
- 4. Tressler CS, Beatty R, Lemp MA. Preservative use in topical glaucoma medications. Ocul Surf. 2011;9(3):140-5
- 5. Ayaki M, Noda Y, Yaguchi S, et al. Cytotoxicity of antiglaucoma ophthalmic solutions for human corneal endothelial cells [in Japanese]. Nippon Ganka Gakkai Zasshi. 2009;113(5):576-582
- 6. De Saint Jean M, Brignole F, Bringuier AF, et al. Effects of benzalkonium chloride on growth and survival of Chang conjunctival cells. Invest Ophthalmol Vis Sci. 1999;40(3):619-630.
- 7. Arita R. Itoh K. Maeda S. et al. Comparison of the long-term effects of various topical antiglaucoma medications on meibomian glands. Cornea. 2012;31:1229-1234.
- 8. Kuppens EV, de Jong CA, Stolwijk TR, et al. Effect of timolol with and without preservative on the basal tear turnover in glaucoma. Br J Ophthalmol. 1995;79:339-342.

- 9. Chung SH, Lee SK, Cristol SM, et al. Impact of short-term exposure of commercial eyedrops preserved with benzal-konium chloride on precorneal mucin. *Mol Vis.* 2006;12:415–421.
- 10. Noecker RJ, Herrygers LA, Anwaruddin E. Corneal and conjunctival changes caused by commonly used glaucoma medications. *Cornea*. 2004;23(5):490-496.
- 11. Kahook MY, Noecker RJ. Comparison of corneal and conjunctival changes after dosing of Travoprost preserved with sofZia, latanoprost with 0.02% benzalkonium chloride, and preservative-free artificial tears. *Comea*. 2008;27(3):339-
- 12. Pisella PJ, Debbasch C, Hamard P, et al. Conjunctival proinflammatory and proapoptotic effects of latanoprost and preserved and unpreserved timolol: an ex vivo and in vitro study. *Invest Ophthalmol Vis Sci.* 2004;45:1360–1368.
- 13. Rouland JF, Traverso CE, Stalmans I, et al; T2345 Study Group. Efficacy and safety of preservative-free latanoprost eyedrops, compared with BAK-preserved latanoprost in patients with ocular hypertension or glaucoma. *Br J Ophthalmol*. 2013;97(2):196-200.
- 14. Kaur IP, Lal S, Rana C, et al. Ocular preservatives: associated risks and newer options. *Cutan Ocul Toxicol*. 2009;28(3):93–103.
- 15. Cunniffe MG, Medel-Jiménez R, González-Candial M. Topical antiglaucoma treatment with prostaglandin analogues may precipitate meibomian gland disease. *Ophthal Plast Reconstr Surg*. 2011;27(5):e128-129.
- 16. Guglielminetti E, Barabino S, Monaco M, et al. HLA-DR expression in conjunctival cells after latanoprost. *J Ocul Pharmacol Ther*. 2002;18:1–9.
- 17. Baudouin C, Liang H, Hamard P, et al. The ocular surface of glaucoma patients treated over the long term expresses inflammatory markers related to both T-helper 1 and T-helper 2 pathways. *Ophthalmology*. 2008;115:109-115.

 18. Erb C, Lanz I, Seidova SF, Kimmich F. Preservative-free tafluprost 0.0015% in the treatment of patients with glaucoma and ocular hypertension. *Adv Ther*. 2011;28(7):575-585.
- 19. Shimazaki J, Hanada K, Yagi Y, et al. Changes in ocular surface caused by antiglaucomatous eyedrops: prospective, randomised study for the comparison of 0.5% timolol v 0.12% unoprostone. Br J Ophthalmol. 2000;84(11):1250-1254. 20. Aydin S, Acikgoz S, Altun A, et al. The effects of topical antiglaucoma drugs as monotherapy on the ocular surface: a prospective study [published online ahead of print June 9, 2014]. J Ophthalmol. doi: 10.1155/2014/460483.
- 21. Toris CB, Gleason ML, Camras CB, Yablonski ME. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol. 1995;113(12):1514-1517.
- 22. Melamed A, David R. Ongoing clinical assessment of the safety profile and efficacy of brimonidine compared with timolol: year-three results. Clin Ther. 2000;22:103–111.
- 23. Katz LJ. Brimonidine tartrate 0.2% twice daily vs timolol 0.5% twice daily: 1-year results in glaucoma patients. Brimonidine Study Group. Am J Ophthalmol. 1999;127(1):20-26.
- 24. Becker HI, Walton RC, Diamant JI, Zegans ME. Anterior uveitis and concurrent allergic conjunctivitis associated with long-term use of topical 0.2% brimonidine tartrate. *Arch Ophthalmol*. 2004;122:1063–1066.
- 25. Katz LJ. Twelve-month evaluation of brimonidine-Purite versus brimonidine in patients with glaucoma or ocular hypertension. *J Glaucoma*. 2002;11(2):119–126.
- 26. Stewart WC, Day DG, Stewart JA, et al. Short-term ocular tolerability of dorzolamide 2% and brinzolamide 1% vs placebo in primary open-angle glaucoma and ocular hypertension subjects. Eye. 2004;18:905–910.
- 27. Fassihi AR, Naidoo MT. Irritation associated with tear-replacement ophthalmic drops: a pharmaceutical and subjective investigation. S Afr Med J. 1989;75(5):233-235.
- 28. Mackie IA, Seal DV, Pescod JM. Beta-adrenergic receptor blocking drugs: tear lysozyme and immunological screening for adverse reaction. *Br J Ophthalmol*. 1977;61:354-359.

- 29. Petounis AD, Akritopoulos P. Influence of topical and systemic beta-blockers on tear production. *Int Ophthalmol* 1989:13:75–80.
- 30. Sagili S, Malhotra R. Dry eyes can be exacerbated by systemic antihypertensive medication. Scott Med J. 2012;57(2):121.
- 31. Bergmann MT, Newman BL, Johnson NC Jr. The effect of a diuretic (hydrochlorothiazide) on tear production in humans. *Am J Ophthalmol*. 1985;99:473–475.
- 32. Moss SE, Klein R, Klein BE. Prevalence of and risk factors for dry eye syndrome. *Arch Ophthalmol*. 2000;118(9):1264–1268.
- 33. Moss SE, Klein R, Klein BE. Incidence of dry eye in an older population. *Arch Ophthalmol*. 2004;122(3):369–373.

 4. Fraunfelder FT. Sciubba JJ. Mathers WD. The role of medications in causing dry eye (Published online ahead of
- 34. Fraunfelder FT, Sciubba JJ, Mathers WD. The role of medications in causing dry eye [Published online ahead of print August 27, 2012]. *J Ophthalmol.* doi: 10.1155/2012/285851.
- 35. Wenderlein M, Mattes S. The "dry eye" phenomenon and ovarian function. Study of 700 women pre- and postmenopausal [in German]. Zentralbl Gynakol. 1996;118(12):643-649.
- 36. Fraunfelder FT, Fraunfelder FW, Chambers WA. Clinical Ocular Toxicology. Philadelphia: Elsevier Saunders; 2008.
- 37. Samarawickrama C Chew S, Watson S. Retinoic acid and the ocular surface. Surv Ophthalmol. 2015;60(3):183-195.
- 38. Moy A, McNamara NA, Lin MC. Effects of isotretinoin on meibomian glands. Optom Vis Sci. 2015;92(9):925-930.

Sarah Marshall, PhD

- adjunct professor, Sacred Heart University, Fairfield, Connecticut
- financial interest: none acknowledged

Robert Noecker, MD, MBA

- director of glaucoma, Ophthalmic Consultants of Connecticut, Fairfield, Connecticut
- assistant clinical professor at Yale School of Medicine, New Haven, Connecticut
- clinical professor, Quinnipiac University School of Medicine, North Haven, Connecticut
- (203) 366-8000; noeckerrj@gmail.com
- financial disclosure: consultant to Aerie Pharmaceuticals, Alcon, Allergan, and Inotek