EVALUATING QUALITY OF LIFE IN GLAUCOMA

Understand the impact of the disease to improve care.

BY FELIPE A. MEDEIROS, MD, PHD

As a major cause of vision loss, glaucoma can affect several aspects of patients' quality of life (QOL) and impair their performance of a broad array of activities of daily living such as reading, walking, and driving. 1-8 Patients with glaucoma may be at increased risk of falls and motor vehicle crashes, two of the leading causes of injury-

related death in the elderly. 9-13 Because currently available treatments for glaucoma may have side effects, eye care providers' knowledge of when and how the disease produces disability is important. The need to slow the rate of functional deterioration to prevent disability should dictate the aggressiveness of treatment.

RATE OF DECLINE

Recent studies have clarified the relationship between progressive structural and functional loss in glaucoma and QOL. 14-19 The rate of visual field loss on standard automated perimetry (SAP) has been shown to be significantly associated with the progressive decline of patient-reported QOL, as assessed by the National Eye Institute Visual Function Questionnaire. Interestingly, even for people

with the same amount of visual field loss, those who had faster rates of change reported a worse decline, suggesting that the velocity at which these defects develop is critically important in determining the impact of disease on QOL. 16,17 Patients with slowly progressing disease may have more time to adapt to their limited functional status by developing compensatory strategies, making them less likely to report a decline in QOL; however, the nature and effectiveness of these compensatory behaviors have not yet been fully elucidated.

In another study, rates of change in retinal nerve fiber layer thickness, measured with optical coherence tomography, were also associated with change in QOL, even after adjustment for the amount of visual field loss over time. This finding suggests that assessing structural damage may provide information for predicting change in QOL in addition to what can be gathered by perimetry. 15

QUESTIONNAIRES

The use of questionnaires to evaluate glaucoma's impact on the activities of daily living has limitations. There is considerable subjectivity involved in patient-reported outcomes and patients' assessment of their disability. To

Figure 1. Driving simulator from the Visual Performance Laboratory at the University of California, San Diego.

address this problem, some investigators have proposed the use of performance-based measures such as the Assessment of Disability Related to Vision.^{8,20-23} This scale includes several tasks that are intimately related to everyday activities such as reading small print, using a calculator, dialing a phone, finding objects, and putting a stick into holes of different sizes. The measurement also assesses mobility. A cross-sectional study of glaucoma patients showed a significant correlation of this scale's measures with visual acuity, contrast sensitivity, and visual field damage in glaucoma.8

DRIVING CONCERNS

An inability to drive is another major concern for patients with glaucoma and for good reason: in many regions, driving is fundamental to maintaining independent living and QOL. Driving cessation is associated with a higher risk of depressive symptoms, social isolation, and entry into long-term care.

Previous studies have indicated that glaucoma patients are at increased risk of motor vehicle crashes, but traditional tests such as SAP have shown only a limited ability to predict driving impairment.^{2,10-12,24-26} More recent investigations have proposed alternative strategies for predicting driving risk in patients with glaucoma, including useful field of view²⁷; driving simulator metrics; and mobile platforms that evaluate visual processing speed, attention, and contrast sensitivity. 11,12,28 These tests evaluate aspects of vision relevant to driving that are not fully assessed by the simple white-on-white testing stimulus of SAP.

In recent investigations, my colleagues and I demonstrated that a combined approach evaluating processing speed, attention, and contrast detection during simulated driving tasks (Figure 1) performed significantly better than conventional metrics for predicting motor vehicle crashes in patients with glaucoma. 12 In a subsequent study, we demonstrated that longitudinal changes on our proposed

- · Glaucoma can affect patients' quality of life and impair their performance of a broad array of activities of daily living such as reading, walking, and driving.
- The rate of visual decline affects how patients rate their quality of life. They rate their quality of life lower if the loss happens quickly.
- New technologies are improving eye care providers' ability to assess driving impairment and fall risk.

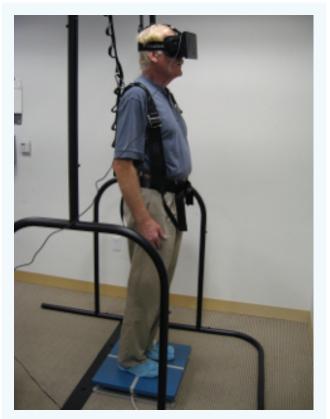


Figure 2. Subject being tested on the virtual reality environment for assessment of balance and postural control at the Visual Performance Laboratory at the University of California, San Diego.

metrics were able to predict police-reported motor vehicle crashes in this population.¹¹ I should note, however, that there is still a paucity of longitudinal prospective studies evaluating driving risk in patients with glaucoma and that, as a result, there are no currently available evidence-based guidelines for assessing driving fitness in patients with the disease. Although many patients with glaucoma cease to drive out of concern about safety, many people with advanced disease continue to drive, even after a previous collision, subjecting themselves and society at large to increased morbidity and mortality.^{9,29}

FALL RISK

Because of the important role of vision in balance control and environment navigation, it is not surprising that glaucoma has been implicated as a risk factor for falls.³⁰⁻³² The disease has been noted to impair people's balance and walking ability, and patients with bilateral vision loss bump into objects more frequently. These factors may result in the two- to fourfold higher risk of falls in glaucoma patients compared to healthy subjects, as noted in

GT's Chief Medical Editor, Steven Vold, MD, tried out a driving simulator in the Shiley Eye Institute's Visual Performance Laboratory.

previous studies.³⁰⁻³² Despite these associations, evidence has shown only a relatively weak correlation between peripheral visual field loss measured by SAP and risk of falls, which may be related to an inadequate ability of this test to evaluate the complex demands put on vision for adequate postural control during daily activities and in challenging lighting conditions.

A recent strategy using virtual reality and assessment of postural reactions to dynamic visual stimuli in glaucoma patients performed better than SAP in predicting fall risk (Figure 2).³³ Balance control was evaluated using a force platform, and the postural reactivity to dynamic visual information was assessed using an immersive virtual environment with head-mounted goggles (Oculus Rift; Oculus). The postural reactivity metrics showed a significant association with self-reported history of falls in the 1-year period before the testing was conducted.³³

CONCLUSION

Glaucomatous visual field loss can significantly affect many daily activities. Determining how the disease leads to disability is paramount to effective management with better allocation of resources. Continued research on this topic is needed to develop guidelines to increase patients' safety and to evaluate potential assistive and rehabilitative strategies.

- 1. Freeman EE, Munoz B, West SK, et al. Glaucoma and quality of life: the Salisbury Eye Evaluation. Ophthalmology. 2008;115(2):233-238
- 2. Ramulu P. Glaucoma and disability: which tasks are affected, and at what stage of disease? Curr Opin Ophthalmol.
- 3. Mathews PM, Rubin GS, McCloskey M, et al. Severity of vision loss interacts with word-specific features to impact out-loud reading in glaucoma. Invest Ophthalmol Vis Sci. 2015;56(3):1537-1545.

- 4. Nguyen AM, van Landingham SW, Massof RW, et al. Reading ability and reading engagement in older adults with glaucoma. Invest Ophthalmol Vis Sci. 2014;55(8):5284-5290.
- 5. Mills RP, Janz NK, Wren PA, Guire KE. Correlation of visual field with quality-of-life measures at diagnosis in the Collaborative Initial Glaucoma Treatment Study (CIGTS). J Glaucoma. 2001;10(3):192-198.
- 6. Broman AT, Munoz B, Rodriguez J, et al. The impact of visual impairment and eye disease on vision-related quality of life in a Mexican-American population: proyecto VER. Invest Ophthalmol Vis Sci. 2002;43(11):3393-3398
- 7. Gutierrez P, Wilson MR, Johnson C, et al. Influence of glaucomatous visual field loss on health-related quality of life. Arch Ophthalmol. 1997;115(6):777-784.
- 8. Richman J, Lorenzana LL, Lankaranian D, et al. Relationships in glaucoma patients between standard vision tests, quality of life, and ability to perform daily activities. Ophthalmic Epidemiol. 2010;17(3):144-151.
- 9. Ramulu PY, West SK, Munoz B, et al. Driving cessation and driving limitation in glaucoma: the Salisbury Eye Evaluation Project. Ophthalmology. 2009;116(10):1846-1853.
- 10. Johnson CA, Keltner JL. Incidence of visual field loss in 20,000 eyes and its relationship to driving performance. Arch Ophthalmol. 1983;101(3):371-375.
- 11. Gracitelli CP, Tatham AJ, Boer ER, et al. Predicting risk of motor vehicle collisions in patients with glaucoma: a longitudinal study. PLoS One. 2015:10(10):e0138288
- 12. Tatham AJ, Boer ER, Gracitelli CP, et al. Relationship between motor vehicle collisions and results of perimetry, useful field of view, and driving simulation in drivers with glaucoma. Transl Vis Sci Technol. 2015;4(3):5.
- 13. McGwin G Jr, Huisingh C, Jain SG, et al. Binocular visual field impairment in glaucoma and at-fault motor vehicle collisions, J Glaucoma, 2015;24(2):138-143.
- 14. Abe RY, Gracitelli CP, Diniz-Filho A, et al. Frequency doubling technology perimetry and changes in quality of life of glaucoma patients: a longitudinal study. Am J Ophthalmol. 2015;160(1):114-122 e111.
- 15. Gracitelli CP, Abe RY, Tatham AJ, et al. Association between progressive retinal nerve fiber layer loss and longitudinal change in quality of life in glaucoma. JAMA Ophthalmol. 2015;133(4):384-390.
- 16. Medeiros FA, Gracitelli CP, Boer ER, et al. Longitudinal changes in quality of life and rates of progressive visual field loss in glaucoma patients. Ophthalmology. 2015;122(2):293-301.
- 17. Lisboa R, Chun YS, Zangwill LM, et al. Association between rates of binocular visual field loss and vision-related quality of life in patients with glaucoma. JAMA Ophthalmol. 2013;131(4):486-494
- 18. McKean-Cowdin R, Varma R, Hays RD, et al; Los Angeles Latino Eye Study Group. Longitudinal changes in visual acuity and health-related quality of life: the Los Angeles Latino Eye study. Ophthalmology. 2010;117(10):1900-1907,
- 19. McKean-Cowdin R, Wang Y, Wu J; Los Angeles Latino Eye Study Group. Impact of visual field loss on healthrelated quality of life in glaucoma: the Los Angeles Latino Eye Study. Ophthalmology. 2008;115(6):941-948 e941.
- 20. Altangerel U, Spaeth GL, Steinmann WC. Assessment of function related to vision (AFREV). Ophthalmic Epidemiol. 2006:13(1):67-80
- 21. Lorenzana L, Lankaranian D, Dugar J, et al. A new method of assessing ability to perform activities of daily living: design, methods and baseline data. Ophthalmic Epidemiol. 2009;16(2):107-114.
- 22. Warrian KJ, Lorenzana LL, Lankaranian D, et al. Assessing age-related macular degeneration with the ADREV performance-based measure. Reting. 2009:29(1):80-90.
- 23. Warrian KJ, Lorenzana LL, Lankaranian D, et al. The assessment of disability related to vision performance-based measure in diabetic retinopathy. Am J Ophthalmol. 2010;149(5):852-860 e851
- 24. Haymes SA, LeBlanc RP, Nicolela MT, et al. Glaucoma and on-road driving performance. Invest Ophthalmol Vis Sci. 2008:49(7):3035-3041.
- 25. McGwin G Jr, Mays A, Joiner W, et al. Is glaucoma associated with motor vehicle collision involvement and driving avoidance? Invest Ophthalmol Vis Sci. 2004;45(11):3934-3939.
- 26. McGwin G Jr, Xie A, Mays A, et al. Visual field defects and the risk of motor vehicle collisions among patients with glaucoma. Invest Ophthalmol Vis Sci. 2005;46(12):4437-4441.
- 27. Wood JM, Owsley C. Useful field of view test. Gerontology. 2014;60(4):315-318.
- 28. Rosen PN, Boer ER, Gracitelli CP, et al. A portable platform for evaluation of visual performance in glaucoma patients. PLoS One. 2015;10(10):e0139426.
- 29. Parc C, Tiberghien E, Pierre-Kahn V. Driving habits in glaucoma patients. J Fr Ophtalmol. 2012;35(4):235-241.
- 30. Ivers RQ, Cumming RG, Mitchell P, Attebo K. Visual impairment and falls in older adults: the Blue Mountains Eye Study. J Am Geriatr Soc. 1998;46(1):58-64.
- 31. Lamoureux EL, Chong E, Wang JJ, et al. Visual impairment, causes of vision loss, and falls: the Singapore Malay Eye Study. Invest Ophthalmol Vis Sci. 2008;49(2):528-533.
- 32. Haymes SA, Leblanc RP, Nicolela MT, et al. Risk of falls and motor vehicle collisions in glaucoma. *Invest Ophthalmol*
- 33. Diniz-Filho A, Boer ER, Gracitelli CP, et al. Evaluation of postural control in patients with glaucoma using a virtual reality environment. Ophthalmology. 2015;122(6):1131-1138.

Felipe A. Medeiros, MD, PhD

- professor of ophthalmology and director, Visual Performance Laboratory, University of California, San Diego
- fmedeiros@eyecenter.ucsd.edu
- financial interest: none acknowledged