WHERE DOES GANGLION CELL ANALYSIS FIT?

The role of macular optical coherence tomography in glaucoma assessment.

BY HIROSHI ISHIKAWA, MD

Optical coherence tomography (OCT) has become a staple in noninvasive imaging for ophthalmology. This strategy provides quantitative as well as qualitative clinical measures/information for various ocular pathologies.¹⁻⁴ With spectral-domain OCT technology, which has a higher scanning speed and improved axial resolution com-

pared to time-domain OCT, it is possible to perform 3-D volumetric scans of the retina and obtain detailed retinal layer analysis in an objective and reproducible fashion.⁵⁻⁸

The circumpapillary retinal nerve fiber layer (cpRNFL) thickness measurement has become a well-established and widely used biomarker in glaucoma assessment since the introduction of OCT. 9-11 In addition to excellent glaucoma discriminating performance, cpRNFL may offer equivalent performance in glaucoma progression assessment, but this statement remains the subject of debate. 12-17 As it measures the thickness along a circle close to the optic nerve head (ONH) margin, cpRNFL covers all the axons of the ganglion cell distributed in the entire retina, but it is not a direct measurement of the glaucoma insult to retinal ganglion cells (RGCs). Instead, cpRNFL is an indirect measure of the consequence of the ganglion cell body damage (the controversy surrounding this statement is along the lines of the debate over which came first, the chicken or the egg).

With its higher resolution and denser sampling of spectral-domain OCT, ganglion cell analysis has become a reality. 18-20 As a result, two new OCT parameters for glaucoma assessment have been introduced: ganglion cell inner plexiform layer (GCIPL) and ganglion cell complex (GCC) thickness. Neither is a pure ganglion cell layer analysis, however, because it is difficult to segment the border between ganglion cell and inner plexiform layers. These two layers are thus combined together as GCIPL to reduce the inaccuracy of automated layer segmentation. GCC goes one step further by including macular RNFL on top of the GCIPL. Because all inner retinal layer borders are generally harder to segment in a precise and reproducible way than inner limiting membrane and retinal pigment epithelium, combining multiple layers improves the stability (or reproducibility) of

With its higher resolution and denser sampling of spectraldomain optical coherence tomography, ganglion cell analysis has become a reality."

segmentation performance; at the same time, however, it may reduce sensitivity to glaucomatous damage by including a structure that is not the primary site of glaucomatous damage, namely the inner plexiform layer.¹⁸

IS GANGLION CELL ANALYSIS BETTER THAN CONVENTIONAL CPRNFL?

The macular region contains a high concentration of more than 50% of RGCs, which can be quantified relatively easily compared to peripheral RGCs that may be too thin for OCT to measure reliably. ²¹⁻²³ In addition, the macular region is the primary location of glaucomatous damage in the disease's early stage. It therefore makes sense to measure RGCs in the macular region. On the other hand, unlike the cpRNFL that covers the entirety of RGC axons, current ganglion cell analysis ignores close to 50% of RGCs outside the macular region, representing the strategy's major weak point.

Many published studies have investigated GCC and/or GCIPL performance in glaucoma assessment compared with the cpRNFL.^{19,23-26} In brief, they are both equally effective for diagnosing glaucoma and assessing its progression. Some studies took a different perspective and combined ganglion cell analysis with conventional cpRNFL and optic disc analysis instead of comparing their performance.²⁷⁻³⁰ These researchers found that combining structural measurements improved glaucoma assessment performances more than using them separately, but currently, no one definitive index illustrates the magnitude of glaucomatous damage that is

- · Ganglion cell analysis with optical coherence tomography provides nearly equivalent glaucoma assessment performance as conventional circumpapillary retinal nerve fiber layer thickness measurement.
- · Combining ganglion cell analysis with circumpapillary retinal nerve fiber layer thickness measurement may provide a better biomarker for glaucoma management.
- Because of the technical advantages of macular scans with optical coherence tomography, performing both macular and optic nerve head scans in cases of glaucoma is recommended.

automatically calculated based on all available structural measurements. The question then becomes, how does the ganglion cell analysis fit into daily clinical tasks? The answer lies in the OCT image acquisition technique.

ADVANTAGES OF OCT MACULAR SCANS

The macular region is the easiest location to perform OCT imaging, because the optical axis of the eye is naturally aligned to the foveola. Conventional cpRNFL requires an ONH scan, which needs an optical path shifted from the optimal central path. In addition, patients are instructed to look at a fixation target that deviates from the natural center, which places additional tension and strain on the eye. All of these things affect OCT signal quality. In my experience as the director of the Ocular Imaging Center at UPMC Eye Center, there is a consistent trend of better OCT signal quality with macular scans than ONH scans, especially in elderly and diseased eyes.

It is obviously ideal to perform both macular and ONH scans for glaucoma assessment when possible. In worstcase scenarios, however, clinicians should prioritize macular scans, because the ganglion cell analysis provides equivalent glaucoma assessment performance, more or less, as the cpRNFL. At UPMC, therefore, all glaucoma patients undergo macular scans first, then ONH scans.

CONCLUSION

Ganglion cell analysis can serve as an alternative OCT structural assessment when ONH scans are difficult. It is better to use both ganglion cell analysis and the conventional OCT measurements as complements to each other, however, in order to make a comprehensive glaucoma assessment.

- 1. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254(5035):1178-1181.
- 2. Schuman JS, Pedut-Kloizman T, Hertzmark E, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996;103(11):1889-1898.
- 3. Hee MR, Puliafito CA, Duker JS, et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology, 1998;105(2):360-370.
- 4. Fujimoto JG, Drexler W, Schuman JS, Hitzenberger CK. Optical coherence tomography (OCT) in ophthalmology: introduction, Opt Express, 2009;17(5):3978-3979.
- 5. Wojtkowski M, Kowalczyk A, Leitgeb R, Fercher AF. Full range complex spectral optical coherence tomography technique in eye imaging. Opt Lett. 2002;27(16):1415-1417.
- 6. Kagemann L, Ishikawa H, Wollstein G, et al. Ultrahigh-resolution spectral domain optical coherence tomography imaging of the lamina cribrosa. Ophthalmic Surg Lasers Imaging. 2008;39(4 suppl):S126-131
- 7. Ho J, Sull AC, Vuong LN, et al. Assessment of artifacts and reproducibility across spectral- and time-domain optical coherence tomography devices. Ophthalmology. 2009;116(10):1960-1970.
- 8. Jungwirth J, Baumann B, Pircher M, et al. Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography. J Biomed Opt. 2009:14(5):050501
- 9. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol. 1995;113(5):586-596.
- 10. Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol. 2004;138(2):218-225.
- 11. Gabriele ML, Ishikawa H, Wollstein G, et al. Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning. Invest Ophthalmol Vis Sci.
- 12. Pieroth L, Schuman JS, Hertzmark E, et al. Evaluation of focal defects of the nerve fiber layer using optical coherence tomography. Ophthalmology. 1999;106(3):570-579.
- 13. Williams ZY, Schuman JS, Gamell L, et al. Optical coherence tomography measurement of nerve fiber layer thickness and the likelihood of a visual field defect. Am J Ophthalmol. 2002;134(4):538-546.
- 14. Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol. 2005;123(4):464-470.
- 15. Lee EJ, Kim TW, Park KH, et al. Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. Invest Ophthalmol Vis Sci. 2009;50(2):662-668.
- 16. Medeiros FA, Zangwill LM, Alencar LM, et al. Detection of glaucoma progression with Stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci. 2009;50(12):5741-5748.
- 17. Naghizadeh F, Garas A, Vargha P, Hollo G. Comparison of long-term variability of retinal nerve fiber layer measurements made with the RTVue OCT and scanning laser polarimetry [published online ahead of print May 31, 2012]. Eur J Ophthalmol. doi: 10.5301/ejo.5000178.
- 18. Ishikawa H, Stein DM, Wollstein G, et al. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci. 2005;46(6):2012-2017.
- 19. Kim NR, Lee ES, Seong GJ, et al. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51(9):4646-4651.
- 20. Barisic F, Sicaja AJ, Ravlic MM, et al. Macular thickness and volume parameters measured using optical coherence tomography (OCT) for evaluation of glaucoma patients. Coll Antropol. 2012;36(2):441-445.
- 21. Tan O. Chopra V. Lu AT. et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116(12):2305-14 e1-2.
- 22. Kim NR, Hong S, Kim JH, et al. Comparison of macular ganglion cell complex thickness by Fourier-domain OCT in normal tension glaucoma and primary open-angle glaucoma. J Glaucoma. 2013;22(2):133-139.
- 23. Sung MS, Yoon JH, Park SW. Diagnostic validity of macular ganglion cell-inner plexiform layer thickness deviation map algorithm using cirrus HD-OCT in preperimetric and early glaucoma. J Glaucoma. 2014;23(8):e144-151.
- 24. Kotowski J, Folio LS, Wollstein G, et al. Glaucoma discrimination of segmented Cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol. 2012;96(11):1420-1425.
- 25. Sung KR, Wollstein G, Kim NR, et al. Macular assessment using optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol. 2012;96(12):1452-1455.
- 26. Akashi A, Kanamori A, Nakamura M, et al. The ability of macular parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma. Invest Ophthalmol Vis Sci. 2013;54(9):6025-
- 27. Na JH, Sung KR, Lee JR, et al. Detection of glaucomatous progression by spectral-domain optical coherence tomography. Ophthalmology. 2013;120(7):1388-1395.
- 28. Suda K, Hangai M, Akagi T, et al. Comparison of longitudinal changes in functional and structural measures for evaluating progression of glaucomatous optic neuropathy. Invest Ophthalmol Vis Sci. 2015;56(9):5477-5484.
- 29. Mwanza JC, Budenz DL. Optical coherence tomography platforms and parameters for glaucoma diagnosis and progression. Curr Opin Ophthalmol. 2016;27(2):102-110.
- 30. Zhang X, Loewen N, Tan O, et al. Predicting development of glaucomatous visual field conversion using baseline Fourier-domain optical coherence tomography. Am J Ophthalmol. 2016;163:29-37.

Hiroshi Ishikawa, MD

- associate professor, Departments of Ophthalmology and Bioengineering, University of Pittsburgh, School of Medicine and Swanson School of Engineering, Pittsburgh
- director, Ocular Imaging Center, UPMC Eye Center, Pittsburgh
- (412) 647-5645; ishikawah@upmc.edu