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O
ptic nerve trauma, ischemia, and 
certain degenerative eye diseases 
can lead to permanent vision 
loss due to the inability of retinal 

ganglion cells (RGCs) to regenerate the 
axons that convey visual information 
from the eye to the brain and the sub-
sequent death of RGCs. Over the past 
20 years, considerable progress has been 
made in defining factors that promote 
or suppress axon regeneration and RGC 
survival after optic nerve injury. 

This article describes research from 
our lab that has identified trophic fac-
tors derived from inflammatory cells 
that promote appreciable levels of 
optic nerve regeneration. These find-
ings provide the basis for a potentially 
viable gene therapy–based approach 
that might in the future help enable 
damaged retinal axons to grow back to 
the brain and restore vision to patients 
with optic nerve damage.

 INTRAOCULAR INFLAMMATION  
 INDUCES OPTIC NERVE REGENERATION 

We discovered that an unintentional 
injury to the lens induces considerable 
axon regeneration and that this effect 
could be mimicked by inducing intraoc-
ular inflammation with zymosan, a frag-
ment of the yeast cell wall.1,2 This regen-
eration was found to be associated with 
a change in RGCs’ intrinsic growth state, 
as evidenced by a massive upregulation 
of GAP-43, SPRR1A, and other growth-
associated proteins (GAPs; also called 
regeneration-associated gene products, 

or RAGs) in a pattern similar to that seen 
during peripheral nerve regeneration.3 

Genetic deletion of two receptors 
that are expressed by inflammatory cells, 
Toll-like receptor 2 (TLR2) and dectin-1, 
eliminates the proregenerative effects of 
zymosan, despite not altering the general 
profile of infiltrative cells.4 β-glucan is a 
component of zymosan that stimulates 
cells of the innate immune system via 
dectin-1, and curdlan, a particulate form 
of β-glucan, mimics the effects of zymo-
san on regeneration.4 

Combining intraocular inflammation 
with elevation of cAMP and PTEN dele-
tion in RGCs and other cells infected 
with an adeno-associated virus serotype 
2 (AAV2) expressing an anti-PTEN short 
hairpin RNA (shRNA) has strongly syn-
ergistic effects. These include increasing 
axon regeneration 10-fold compared 
with any of the treatments alone and 
enabling some axons to reach the 
optic chiasm by 6 weeks5 and to rein-
nervate subcortical visual nuclei by 10 
to 12 weeks.6 These regenerating axons 
become myelinated, although the pro-
cess proceeds slowly.7 The brain target 
reinnervation leads to a limited recovery 
of simple visual reflexes such as the 
optomotor response.6 

These findings raise the question of 
whether the positive factors associated 
with inflammation can be identified 
to promote regeneration in a clinically 
useful way. 

Oncomodulin. Our earlier work 
showed that the carbohydrate 

mannose, which is abundant in the vit-
reous and cerebrospinal fluid, stimulates 
appreciable axon growth from goldfish 
RGCs and moderate outgrowth from rat 
RGCs. These effects require elevation of 
cAMP and are strongly augmented by 
a protein secreted by activated macro-
phages.2,8 Using column chromatogra-
phy, mass spectrometry, and bioassays, 
we identified the 11 kDa Ca2+-binding 
protein oncomodulin (Ocm) as a major 
growth-promoting factor associated 
with inflammation.9 

Ocm is secreted by infiltrative neutro-
phils and macrophages, and it accumu-
lates in the neural retina 12 to 24 hours 
after induction of intraocular inflamma-
tion, binding to a high-affinity receptor 
on RGCs (Kd ~ 28 nM).5,9,10 Elevation of 
cAMP alone induces only modest axon 
regeneration11 but is required for Ocm 
and other trophic factors to bind to 
their cognate receptors on RGCs.5,9,12,13 
Delivery of Ocm and a cAMP analog 
via slow-release polymer beads mimics 
the proregenerative effects of zymosan; 
conversely, blocking the effects of Ocm 
with either a neutralizing antibody 
or a blocking peptide strongly sup-
presses the effects of zymosan.9,10,14 
Regeneration is also diminished by 
immune-depletion of neutrophils, 
implying that these first responders of 
the innate immune system mediate 
most of the effects of inflammation on 
optic nerve regeneration.10 

Ocm has also been reported to syn-
ergistically promote axon outgrowth 
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in RGCs when combined with a small 
interfering RNA against the Nogo-66 
receptor15 and to contribute to the 
conditioning lesion effect in the peripher-
al nervous system. This, in turn, enables 
injured dorsal root ganglion (DRG) 
neurons to extend axons following the 
accumulation of infiltrative cells into 
peripheral nerves and DRGs.16

SDF1. A second growth factor asso-
ciated with intraocular inflammation 
is the chemokine stromal cell-derived 
factor 1 (SDF1; also called CXCL12). 
SDF1 acts through the receptor CXCR4, 
which is expressed in neurons, inflam-
matory cells, and other cell types17-19 
as well as through CXCR7.20 SDF1 
has a wide range of effects on central 
nervous system development and 
hematopoiesis.21,22 It is highly expressed 
in infiltrative macrophages and acts 
synergistically with Ocm to induce 
optic nerve regeneration.23 Deletion of 
SDF1 in myeloid cells, using CXCL12fl/fl-

LysMCre-/+ mice, or deletion of its recep-
tor CXCR4 in RGCs, using CXCR4fl/fl 
mice injected intraocularly with AAV2-
Cre virus, diminished inflammation-
induced optic nerve regeneration by 
approximately one-third and fully elim-
inated inflammation on RGC survival.23

Blockade of both Ocm and SDF1 
decreased inflammation-induced 
regeneration by 70% to 80%.23 In 
gain-of-function experiments, although 
SDF1 alone has only modest effects on 
regeneration,24,25 SDF1 combined with 
Ocm and cAMP mimics most of the 
proregenerative effects of intraocular 
inflammation.23 The level of SDF1 asso-
ciated with intraocular inflammation 
appears to be below optimal levels, as 
adding exogenous SDF1 to intraocular 

inflammation doubles the number of 
axons that regenerate the full length 
of the optic nerve and increases the 
number of axons that extend through 
the optic chiasm and the optic tract 
and into the dorsal lateral geniculate 
nucleus.23 

SDF1 exerts its effects by activating 
phosphatidylinositol 3-kinase (PI3K) 
signaling, elevating intracellular cAMP, 
and antagonizing the axon repellant 
effects of slit/robo.23,25,26 Thus, Ocm 
and SDF1 are two of the major prore-
generative constituents of intraocular 
inflammation, and together they may 
be useful in promoting optic nerve 
repair clinically.  

CNTF. Ciliary neurotrophic factor 
(CNTF) has also been proposed to medi-
ate the effects of intraocular inflamma-
tion on axon regeneration.27 Although 
CNTF and other cardiotrophin family 
chemokines become elevated in the 
eye after intraocular inflammation,10,28 
at physiologic concentrations recom-
binant CNTF (rCNTF) alone has little 
axon-promoting effect on RGCs in cell 
culture9,14,29 and weak or no effects on 
optic nerve regeneration in vivo.1,30-34 
In the paradigm in which a segment of 
peripheral nerve is grafted onto the cut 
end of the optic nerve, high concentra-
tions of rCNTF augmented axon regen-
eration,35 but these effects were due to 
the chemotactic effects of CNTF on 
macrophages.36,37 

In contrast, unlike rCNTF, AAV2-
mediated CNTF delivery induces con-
siderable axon regeneration through 
the optic nerve. However, we recently 
showed that this effect is due to the 
infiltration of inflammatory cells into the 
eye that express Ocm, SDF1, and other 

trophic factors.38 One reason for the low 
efficacy of rCNTF is that SOCS3, a repres-
sor of the Jak-STAT signaling pathway, 
increases postnatally and increases even 
further after optic nerve injury.3,32,39 
Accordingly, deletion of SOCS3 ampli-
fies the effects of rCNTF.33 In addition, 
mature RGCs do not express appre-
ciable CNTFRa, the specific receptor 
subunit for CNTF (unpublished data). 
Elsewhere in the nervous system, this 
subunit can be released from one 
type of cell and become anchored to 
another cell type via a glycosylphospha-
tidylinositol linkage to form part of a 
tripartite receptor complex with LIFRβ 
and glycoprotein 130 (gp130).40 

CNTFRa is heavily expressed on 
astrocytes and inflammatory cells, and, 
as noted above, the effects of CNTF 
gene therapy on optic nerve regenera-
tion are mediated by factors secreted 
by these cells. Nonetheless, CNTF and 
related trophic factors appear to play 
an important role in the visual system, 
as double deletion of CNTF and leuke-
mia inhibitory factor (LIF) accelerates 
RGC death after optic nerve injury and 
prevents regeneration.28

Other growth factors. Several other 
growth factors have been reported to 
stimulate RGC survival but limited optic 
nerve regeneration; whether these fac-
tors act directly on RGCs is generally 
not known. These factors include, but 
are not limited to, fibroblast growth 
factor-2 (FGF2),41 BDNF,31,42-49 GDNF,50,51 
and insulin-like growth factor 1 (IGF1)52-

55 combined with osteopontin.56 
Gene therapy and full-length optic 

nerve regeneration. Combinatorial 
treatment of inflammation-derived 
growth factors via gene therapy 

Figure. An example of a combinatorial gene therapy treatment leading to full-length optic nerve regeneration. CTB-positive axons are visualized in a longitudinal section through the 
optic nerve (14 µm thick) 6 to 8 weeks after nerve crush followed by intraocular injection of an adeno-associated virus expressing an shRNA to knock down expression of the PTEN gene 
(AAV2-shPTEN), a shH10-oncomodulin virus, AAV2-c/a-adenylate cyclase, and the chemokine stromal cell-derived factor 1 (SDF1). Asterisk: nerve injury site; scale bar: 150 µm.
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has potential clinical significance. 
By administering AAV2-SDF1, shH10-
Ocm, and other cofactors after optic 
nerve injury, we have been able to get 
hundreds of mouse RGCs to extend 
axons the entire length of the optic 
nerve and into the optic chiasm after 
8 weeks (Figure).57 

 FUTURE DIRECTIONS 
Over the past 2 to 3 decades, optic 

nerve regeneration has gone from being 
considered impossible to becoming a 
reality. Clearly, much more needs to be 
done to increase the number of axons 
that reach their appropriate destinations, 
evaluate whether regenerating axons 
form a topographically organized map 
of visual space in the lateral geniculate 
nucleus and superior colliculus, and 
assess visual acuity. 

Perhaps these advances will take the 
form of manipulating transcriptional and 
epigenetic regulators of the regenerative 
program (material submitted for publi-
cation), counteracting cell-extrinsic sup-
pressors of regeneration associated with 
myelin and the fibrotic scar that forms 
at the injury site,58,59 or altering the intra-
retinal signaling pathway that leads to a 
toxic elevation of free zinc in the retina.60 
Alternatively, they may take the form 
of identifying additional potent trophic 
agents for RGCs, discovering ways to 
alter the immune and glial response to 
injury, reprogramming the entire retina, 
or perhaps something that is currently 
outside our conceptual models. In any 
event, the strides that have been made 
to date are considerable and point to the 
possibility that one day we may be able 
to restore vision after optic nerve injury 
in a clinically meaningful way.  n
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