Perfecting the Peripheral Laser Iridotomy

Knowing when to perform LPIs and where to put them may produce better visual outcomes.

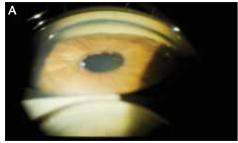
BY MARLENE R. MOSTER, MD

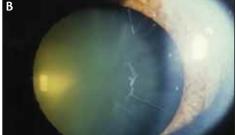
urgeons commonly perform an Nd:YAG peripheral iridotomy (LPI) in patients with pupillary block, those with chronic angle closure, or, more rarely, in pigmentary dispersion syndrome. The purpose of this procedure is to reverse the pupillary block by creating a new drainage pathway for the aqueous. Most surgeons agree that LPI is necessary to resolve acute angle closure, but there may be other situations in which this procedure will benefit the patient. I use several criteria to decide when and where to perform an LPI.

WHEN IS AN LPI NECESSARY?

Overview

I consider performing an LPI when (1) I can barely see the top of the trabecular meshwork without compression or (2) there are peripheral anterior synechiae in the angle. Other factors include the presence of hyperopia and a family history of narrow angles or angle closure. Although it is rare, myopes can develop angle closure and require an LPI, especially if the Von Herrick test shows that the corneal endothelium almost touches the


posterior iris. Following are some situations in which I would be likely to perform an LPI.


Case No. 1

The patient is hyperopic, with or without peripheral anterior synechiae, and the angle looks optically closed without compression. The angle opens easily on compression gonioscopy, and I can see either the scleral spur or the ciliary body. The iris typically looks like a balloon or volcano (Figure 1A). An LPI is indicated even if the IOP is normal. A narrow angle, an elevated IOP, and the presence of peripheral anterior synechiae indicates that the diagnosis of angle closure may have been made too late in the process.

Case No. 2

The patient has narrow, optically occludable angles and is taking psychiatric drugs, sleeping pills, antihistamines, anticholinergic drugs for Parkinson's disease, or gastrointestinal medications that have atropine-like side effects. An LPI is indicated because the sympatomimet-

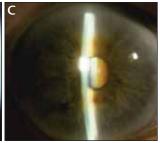


Figure 1. An LPI can create an alternative pathway for aqueous drainage in hyperopic eyes without peripheral synechiae (A); eyes with a unilateral narrow angle from pseudoexfoliation caused by zonular weakness (B); or eyes with large phacomorphic lenses with occludable angles who are poor candidates for cataract surgery (C).

SURGICAL PEARLS

ic effect of these drugs may dilate the pupil and occlude the angle.

Case No. 3

The patient has severe narrowing of the angle and unilateral pseudoexfoliation. The lax zonules caused by the pseudoexfoliation can potentially push the iris anteriorly and cause angle closure (Figure 1B).

Case No. 4

The patient has very narrow angles in conjunction with diabetes or macular degeneration with a frequent need for pupillary dilation.

Case No. 5

The patient has a large, dense, phacomorphic lens pushing the iris diaphragm forward but is not a surgical candidate (Figure 1C). These eyes deserve an LPI to prevent the formation of acute or chronic angle closure.

It is not necessary to perform an LPI in patients who have narrow angles but have a good, deep recess on gonioscopy. These patients just need to be followed with repeat gonioscopy during the year. Patients with a suspected plateau iris should undergo LPI, however, which will remove all aspects of the pupillary block. If the angles are still occludable after the LPI, then the surgeon should consider a diagnosis of plateau iris and discuss a trial of pilocarpine or laser gonioplasty with the patient.

HOW TO PERFORM AN LPI

I prepare patients for an Nd:YAG iridotomy by instilling a drop of proparacaine and apraclonidine (lopidine; Alcon Laboratories, Inc., Fort Worth, TX) prior to placing the lens in the operative eye. I usually set the laser for between 8 and 10 mJ. Although the location of an LPI can vary depending on the availability of a crypt and the thickness of the iris, the favored placement is between 11 and 1 o'clock. If possible, the iridotomy should be placed where it will be covered completely by the upper eyelid. Very rarely, a small LPI may fill in with pigment and require subsequent revision. Surgeons should not rely on transillumination of the iris alone to assure an iridotomy's patency. Instead, they should perform a slit-lamp examination to ensure a through-and-through opening.

Patients are sent home with instructions to instill a topical steroid every 1 to 2 hours while awake and then four times a day for 4 days before discontinuing the drug.

DETERMINING THE LPI'S PLACEMENT

Compared with incisional iridectomy, LPI is less likely to cause complications such as bleeding, infection, a

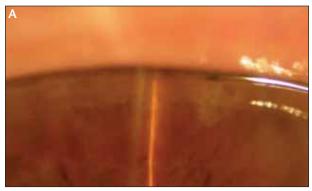


Figure 2. Partially exposed LPIs (A) are more likely to cause visual disturbances such as shadows and lines than LPIs that are completely covered by the superior eyelid (B).

leaking wound, and cataract. Some patients, however, report visual side effects such as ghosting, glare, and transient blurring. Murphy and Trope¹ found that 2.7% (13 of 480) of patients reported monocular blurring or seeing a colored line after undergoing LPI. Upon examination, the investigators determined that the iridotomies in these eyes were partially exposed by the upper eyelid and that the visual disturbances disappeared when the iridotomy was either fully covered or fully exposed.

In 2005, my colleagues and I evaluated the frequency of visual disturbances after LPI in relation to the iridotomy's size and position under the eyelid.² Our study included 93 patients (172 eyes) who underwent LPI between 1984 and 2003 and 100 control subjects. Fiftyseven of the patients in the control group had glaucoma, and 43 did not.

We administered a standardized questionnaire to both subject groups to determine the incidence of visual disturbances such as halos, lines, crescents, ghost images, glare, spots, shadows, or blurring. We also documented the size and position of the LPIs with a slit-lamp evaluation.

ALPHAGAN® P is indicated for the lowering of intraocular pressure in patients with open-angle glaucoma or ocular hypertension.

CONTRAINDICATIONS

ALPHAGAN® P is contraindicated in patients with hypersensitivity to brimonidine tartrate or any component of this medication. It is also contraindicated in patients receiving monoamine oxidase (MAO) inhibitor therapy.

PRECAUTIONS

Although brimonidine tartrate ophthalmic solution had minimal effect on the blood pressure of patients in clinical studies, caution should be exercised in treating patients with severe cardiovascular disease.

ALPHAGAN® P has not been studied in patients with hepatic or renal impairment; caution should be used in treating such patients.

ALPHAGAN® P should be used with caution in patients with depression, cerebral or coronary insufficiency, Raynaud's phenomenon, orthostatic hypotension, or thromboangiitis obliterans, Patients prescribed IOP-lowering medication should be routinely monitored for IOP.

Information for Patients:

As with other drugs in this class, ALPHAGAN® P may cause fatigue and /or drowsiness in some patients. Patients who engage in hazardous activities should be cautioned of the potential for a decrease in mental alertness.

Although specific drug interaction studies have not been conducted with ALPHAGAN® P, the possibility of an additive or potentiating effect with CNS depressants (alcohol, barbiturates, opiates, sedatives, or anesthetics) should be considered. Alpha-agonists, as a class, may reduce pulse and blood pressure. Caution in using concomitant drugs such as anti-hypertensives and/or cardiac glycosides is advised.

Tricyclic antidepressants have been reported to blunt the hypotensive effect of systemic clonidine. It is not known whether the concurrent use of these agents with ALPHAGAN® P in humans can lead to resulting interference with the IOP lowering effect. No data on the level of circulating catecholamines after ALPHAGAN® P administration are available. Caution, however, is advised in patients taking tricyclic antidepressants which can affect the metabolism and uptake of circulating amines.

Carcinogenesis, Mutagenesis, and Impairment of Fertility:
No compound-related carcinogenic effects were observed in either mice or rats following a 21-month and 24-month study, respectively. In these studies, dietary administration of brimonidine tartrate at doses up to 2.5 mg/kg/day in mice and 1.0 mg/kg/day in rats achieved 150 and 120 times or 90 and 80 times, respectively, the plasma drug concentration (Cmax) estimated in humans treated with one drop of ALPHAGAN® P 0.1% or 0.15% into both eyes

Brimonidine tartrate was not mutagenic or cytogenic in a series of in vitro and in vivo studies including the Ames test, chromosomal aberration assay in Chinese Hamster Ovary (CHO) cells, a host-mediated assay and cytogenic studies in mice, and dominant lethal assay

Pregnancy:

Teratogenic effects: Pregnancy Category B.

Reproductive studies performed in rats and rabbits with oral doses of 0.66 mg base/kg revealed no evidence of impaired fertility or harm to the fetus due to ALPHAGAN® P. Dosing at this level produced an exposure in rats and rabbits that is 190 and 100 times or 120 and 60 times higher, respectively, than the exposure seen in humans following multiple ophthalmic doses of ALPHAGAN® P 0.1% or 0.15%

There are no adequate and well-controlled studies in pregnant women. In animal studies, brimonidine crossed the placenta and entered into the fetal circulation to a limited extent. ALPHAGAN® P should be used during pregnancy only if the potential benefit to the mother justifies the potential risk to the fetus

Nursing Mothers:

It is not known whether this drug is excreted in human milk; although in animal studies brimonidine tartrate was excreted in breast milk. A decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother

Pediatric Use:

In a well-controlled clinical study conducted in pediatric glaucoma patients (ages 2 to 7 years) the most commonly observed adverse events with brimonidine tartrate ophthalmic solution 0.2% dosed three times daily were somnolence (50%-83% in patients ages 2 to 6 years) and decreased alertness. In pediatric patients 7 years of age or older (>20kg), somnolence appears to occur less frequently (25%). Approximately 16% of patients on brimonidine tartrate ophthalmic solution discontinued from the study due to somnolence.

The safety and effectiveness of brimonidine tartrate ophthalmic solution have not been studied in pediatric patients below the age of 2 years. Brimonidine tartrate ophthalmic solution is not recommended for use in pediatric patients under the age of 2 years. (Also refer to Adverse Reactions section.)

No overall differences in safety or effectiveness have been observed between elderly and other adult patients.

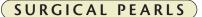
ADVERSE REACTIONS

Adverse events occurring in approximately 10-20% of the subjects receiving brimonidine ophthalmic solution (0.1-0.2%) included: allergic conjunctivitis, conjunctival hyperemia, and eye pruritus. Adverse events occurring in approximately 5-9% included: burning sensation, conjunctival folliculosis, hypertension, ocular allergic reaction, oral dryness, and visual disturbance.

Adverse events occurring in approximately 1-4% of the subjects receiving brimonidine ophthalmic solution (0.1-0.2%) included: allergic reaction, asthenia, blepharitis, blepharoconjunctivitis, blurred vision, bronchitis, cataract, conjunctival edema, conjunctival hemorrhage, conjunctivitis, cough, dizziness, dyspepsia, dyspnea, epiphora, eye discharge, eye dryness, eye irritation, eye pain, eyelid edema, eyelid erythema, fatigue, flu syndrome, follicular conjunctivitis, foreign body sensation, gastrointestinal disorder, headache, hypercholesterolemia, hypotension, infection (primarily colds and respiratory infections), insomnia, keratitis, lid disorder, pharyngitis, photophobia, rash, rhinitis, sinus infection, sinusitis, somnolence, stinging, superficial punctate keratopathy, tearing, visual field defect, vitreous detachment, vitreous disorder, vitreous floaters, and worsened visual acuity.

The following events were reported in less than 1% of subjects: corneal erosion, hordeolum, nasal dryness, and taste

The following events have been identified during post-marketing use of brimonidine tartrate ophthalmic solutions in clinical practice. Because they are reported voluntarily from a population of unknown size, estimates of frequency cannot be made. The events, which have been chosen for inclusion due to either their seriousness, frequency of reporting, possible causal connection to brimonidine tartrate ophthalmic solutions, or a combination of these factors include: bradycardia; depression; iritis; keratoconjunctivitis sicca; miosis; nausea; skin reactions (including erythema, eyelid pruritus, rash, and vasodilation) and tachycardia. Apnea; bradycardia; hypotension; hypothermia; hypotonia; and somnolence have been reported in infants receiving brimonidine tartrate ophthalmic solutions.


Rx Only

© 2005 Allergan, Inc. Irvine, CA 92612, U.S.A. Based on package insert 71816US10S revised August 2005.

Marks owned by Allergan

US Pat. 5,424,078; 5,736,165; 6,194,415; 6,248,741; 6,465,464; 6,562,873; 6,627,210; 6,641,834; 6,673,337 0.1%-9541X 0.15%-9174X

According to the questionnaire, 15% of the eyes in the study group and 66% of the eyes in the control group experienced halos, glare, and blurred vision. The incidence of ghost images and crescents was three times higher among eyes that underwent LPIs. Of note, shadows and lines occurred only in patients with LPIs.

In the study group, LPIs were covered by the upper eyelid in 90 eyes (53%), completely exposed in 40 (23%), and partially exposed in 42 (24%). The highest incidence of visual disturbances was among eyes with partially covered LPIs (26%). Unwanted visual phenomena occurred less frequently with fully exposed (17.5%) and completely covered (8.9%) LPIs. The iris' color did not affect the frequency of visual disturbances.

"Openings placed outside the 11- to 1-o'clock range are more likely to be partially exposed ... and increase the risk of postoperative visual disturbances."

Currently, no guidelines exist for the optimal placement of LPIs. Our study suggests that openings placed outside the 11- to 1-o'clock range are more likely to be partially or fully exposed by the upper eyelid and thus may increase the risk of postoperative visual disturbances (Figure 2).

CONCLUSION

Even if patients respond well to LPI and do not develop visual disturbances, they should still undergo routine gonioscopy during their follow-up examinations. While examining the angle, the clinician should be able to see the trabecular meshwork and the scleral spur. If not, the angle may be irreversibly closed or have a plateau configuration.

The benefits of an LPI far outweigh the risk of creating one. The visual disturbances noted by some patients can be avoided by placing the LPI either where it is completely covered or completely exposed by the upper eyelid. Even if the patient notes shadows and lines initially, these

Marlene R. Moster, MD, is Professor of Clinical Ophthalmology at the Thomas Jefferson School of Medicine and an attending surgeon at Wills Eye Hospital in Philadelphia. She acknowledged no financial interest in the products or companies mentioned herein. Dr. Moster may be reached at (215) 928-3342; moster@willsglaucoma.org.

- 1. Murphy PH, Trope GE. Monocular blurring. A complication of YAG laser iridotomy. Ophthalmology. 1991;98:1539-1542.
- 2. Spaeth GL, Idowu O, Seligsohn A, et al. The effects of iridotomy size and position on symptoms following laser peripheral iridotomy. J Glaucoma. 2005;14:364-367.

