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The Future of Artificial 
Intelligence in 
Interventional Oncology
Potential applications of AI within IO include patient diagnosis, response prediction, and 

intraprocedural guidance, dependent upon standardized and responsible implementation.

By Helen Zhang, BS; Shreyas Kulkarni, BS; Zhicheng Jiao, PhD; and Harrison X. Bai, MD, MS

A rtificial intelligence (AI) has demonstrated tre-
mendous potential to enhance clinical deci-
sion-making, with models capable of identify-
ing complex underlying relationships within 

data.1 In the context of image-guided minimally invasive 
therapies, AI may be able to rapidly interpret multimo-
dality imaging and clinical data to provide personalized 
clinical support. Although the field of interventional 
oncology (IO) is rapidly evolving, clinical applications 
of AI are limited. The adoption of AI within IO has the 
potential to significantly improve patient diagnosis, 
treatment, and management.

CURRENT APPLICATIONS OF AI IN IO
Patient Identification and Diagnosis

AI technologies have been prominently developed 
for patient identification and diagnosis.2 An increasingly 
common approach in cancer detection, radiomics is a 
method of assessing lesions through image character-
istics invisible to the naked eye.3 AI has demonstrated 
near-physician abilities in detecting and classifying 
lesions, with improved performance when such tools 
are used in concert with radiologists.2 AI-driven algo-
rithms may also impact how clinicians determine tumor 
severity. Through advanced radiomics, AI has demon-
strated prowess in classifying tumors in hepatocellular 
carcinomas and assessing malignancy in breast lesions. 
This AI method of evaluation can eliminate the need for 
excessive invasive biopsies and reduce health care costs 
for patients.2 As with most AI tasks, these decision-

making models require a significant amount of data, 
representative of the target population. To be properly 
integrated into clinical practice and care, institutional 
protocols for producing representative models must be 
in place to protect patients and prevent exacerbation of 
health care inequity.4

Patient Selection
AI models have achieved notable performance in 

patient selection and response prediction compared to 
existing treatment algorithms and staging systems.5-8 
Reliance of traditional systems on a small number of 
clinical, laboratory, and qualitative imaging features 
limits the extent of patient characterization possible. 
However, AI models utilize all of a patient’s data to 
provide more individualized staging. Models have dem-
onstrated strong results in predicting response to pro-
cedures such as transarterial chemoembolization and 
tumor ablation.5,9 These algorithms can be employed 
to identify patients who may be suitable candidates for 
certain procedures and provide personalized treatment 
plans.

Intraprocedural Guidance
AI may be able to directly provide guidance during IO 

procedures, although there is limited literature describ-
ing such approaches. A suggested application is image 
fusion of intraprocedural imaging with diagnostic scans, 
providing a multimodality approach to real-time tumor 
localization.10,11 Theoretical models may also analyze 
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relationships between procedural approach and thera-
peutic effect in real time, providing intraprocedural 
guidance to optimize patient outcomes. These models 
may help guide catheter navigation, ablation, probe 
placement, and other IO techniques. For example, sev-
eral studies have trained convolutional neural networks 
to improve needle tip localization.12,13 These findings 
indicate that AI may have many unexplored applica-
tions particularly relevant to IO.

Innovations in Large Language Models 
There has recently been significant development in 

the natural language processing space, with chatbots 
like ChatGPT (OpenAI) and Bard (Google) becoming 
popular in the public domain.14 GPT-4 (OpenAI) and 
Med-PaLM 2 (Google) have performed above 80% on 
United States medical licensing examinations, prompt-
ing discussion of their potential clinical applications.15,16 
For IO, large language models (LLMs) may be useful 
for patient education on interventional procedures, 
producing patient-specific explanations.17 Additionally, 
these may serve a role as medical decision-making 
tools for clinicians; LLMs have produced near-physician 
results in breast tumor board recommendations.18 The 
synthesis ability of LLMs enables them to condense 
large knowledge bases, potentially providing clinical 
decision support in time-sensitive situations.19 LLMs 
may also facilitate time-consuming tasks for IO practi-
tioners, such as writing radiology reports.20 Although 
LLMs have demonstrated promise, issues such as out-
put hallucinations and source fabrication limit their 
present reliability.17,21 To provide responses to user 
prompts, LLMs may “hallucinate” and fabricate facts or 
reference nonexistent sources.22,23 Such hallucinations 
could be harmful, if not fatal, if patients or doctors 
were to assume incomplete/incorrect information to be 
trustworthy. Several methods have been developed to 
combat hallucinations; however, implementation var-
ies widely and concerns about LLM bias and robustness 
remain.23,24 Limited model reliability may subsequently 
increase mistrust of LLMs, as has been publicized in pre-
vious occurrences.25,26 LLM models must be verified and 
validated aggressively to demonstrate sufficient reliabil-
ity for health care integration. 

CONSIDERATIONS FOR AI IMPLEMENTATION
Interpretability

Improving model interpretability is integral to adopt-
ing AI in health care. A significant barrier to integration 
is lack of model transparency, as quantitative features 
are difficult for humans to interpret. As such, models 
should be accompanied by explanations of develop-

ment and decision-making processes. Radiologists also 
require training to understand how models work and 
how to interpret findings. Technologic approaches to 
improving interpretability exist, such as feature attribu-
tion strategies that highlight imaging regions influential 
to model decision-making.27 Prioritizing explainability 
will allow clinicians to make informed decisions, espe-
cially in cases where there is disagreement with AI.28 To 
develop meaningful AI solutions that align with current 
IO approaches, interventional oncologists will need to 
play a significant role in developing and validating tech-
nology. Proper understanding of AI’s logic and capabili-
ties is necessary for widespread acceptance, as well as 
meaningful integration into patient-centered care.

 
Standardization

Prior to real-world implementation, AI models 
require standardization and testing to be trusted as 
a decision-making tool. They must be subjected to 
standard approval and regulatory processes to prevent 
negative impacts on patient care.

In the process of model development, it is ideal 
to standardize as many steps as possible to ensure 
reproducibility of findings. For example, many exist-
ing radiomics studies use standardized feature extrac-
tion algorithms, such as tools provided within the 
PyRadiomics package.29 The widespread adoption of 
well-documented tool sets and algorithms help to stan-
dardize AI models and improve their performance. In 
addition, generalizability should be considered through-
out model development. Although alterations to model 
structures and tuning of hyperparameters may help 
attain higher performance, they may limit generalizabil-
ity in external testing and other applications. A balance 
must be found between continuous optimization and 
timely practical implementation.

Institutional variations in procedural standards may 
pose significant limitations to standardization, as image 
acquisition protocols and available imaging modalities 
may drastically shape model development. In addition, 
different administrative practices and data manage-
ment systems may impact implementation across insti-
tutions. Approaches such as data augmentation and 
dropout attempt to account for institutional differences 
by increasing model versatility.30 Future studies should 
explore additional approaches for broad applicability to 
ensure even integration across different institutions.

Furthermore, investigators should be expected to 
document the model development process to enable 
model acceptance. Standardized guidelines such as 
TRIPOD-AI (Transparent Reporting of a multivari-
able prediction model of Individual Prognosis Or 



66 ENDOVASCULAR TODAY OCTOBER 2023 VOL. 22, NO. 10

I N T E R V E N T I O N A L 
O N CO LO G Y

Diagnosis), PROBAST‑AI (Prediction model Risk Of 
Bias ASsessment Tool), CLAIM (Checklist for Artificial 
Intelligence in Medical Imaging), and RQS (Radiomics 
Quality Score) should be employed when reporting 
imaging AI studies.31,32 Despite the increasing number 
of publications reporting novel AI applications, relative-
ly few reference reporting quality guidelines. Publishers 
should establish such guidelines as expectations moving 
forward.

In 2021, the FDA issued the “Artificial Intelligence/
Machine Learning (AI/ML)-Based Software as a Medical 
Device (SaMD) Action Plan.”33,34 The plan outlined five 
intended actions: (1) tailored regulatory framework, 
(2) good machine learning practice, (3) patient-cen-
tered approach incorporating transparency to users, 
(4) regulatory science methods regarding algorithm bias 
and robustness, and (5) real-world performance. Federal 
agencies such as the National Institute of Standards and 
Technology and the National Science Foundation have 
taken actions to promote knowledge, leadership, and 
coordination in establishing AI standards. International 
committees have also been established to define 
technical, clinical, and regulatory standards to ensure 
consistent operability of AI across clinical centers and 
geographic regions. Researchers and clinicians in IO will 
benefit from field-wide awareness and understanding of 
such efforts.

Model Assessment
A recurring theme within AI integration is the need 

to mitigate algorithm bias and improve robustness. 
Models must be subjected to thorough examination 
and validation by external parties to account for pos-
sible bias in development and reporting. Algorithms 
trained on imbalanced data may promote bias and 
exacerbate existing health disparities. However, data set 
descriptions are often lacking in information needed 
to assess such bias. In addition, high performance of 
AI models may be due to overfitting or confounding, 
leading to diminished performance upon external test-
ing.35,36 As such, extensive external validation is neces-
sary to assess model generalizability. 

In addition, AI metrics rarely represent clinical appli-
cability.37 Before clinical implementation is considered, 
randomized controlled trials (RCTs) are necessary to 
evaluate an intervention’s impact. The SPIRIT-AI and 
CONSORT-AI extensions were established in 2020 to 
provide protocol and reporting guidelines, respectively, 
for clinical trials evaluating AI-related interventions, an 
important step in promoting transparency and rigor 
in AI research.38,39 However, there have been few RCTs 
conducted for AI technologies, with even fewer in IO.40,41 

Future RCTs should also consider evaluating perfor-
mance of AI models when combined with humans to 
more realistically model clinical scenarios.42,43 

Clinical Implementation
To facilitate clinical adoption, AI models must be 

integrated into the radiologic workflow in a user-friendly 
manner. This will require the efforts of interventional 
oncologists familiar with AI to ensure usability. Clinicians 
must be able to interface with and understand such 
technology, and there must be mechanisms for physi-
cians to evaluate AI technology and provide feedback, as 
well as opt out of integrating AI into workflows.

Before incorporating commercially available AI algo-
rithms into clinical practice, institutions should test 
models on local data sets to ascertain suitability for 
their patient population. Depending on the intended 
generalizability of models, site-specific training may be 
necessary to adapt systems for local use. Furthermore, 
institutions should establish data registries and guide-
lines for monitoring model performance in clinical 
workflows. Such systems will allow institutions to evalu-
ate the impact of AI models, as well as help identify 
potential areas for improvement and any potential 
safety concerns. 

Models may require updates and eventual retraining, 
for which regulatory protocols should be established 
beforehand.44 Although improvements are constantly 
being made in AI model performance, frequent imple-
mentation may result in drift. Updates should be lim-
ited and accompanied by comprehensive evaluation 
of clinical significance. It is also important to recognize 
that clinical and operational practices evolve over 
time, as do patient populations.45 The introduction 
of novel algorithms may cause significant changes in 
practice, which will subsequently impact input data. 
Thus, it is necessary to carefully evaluate longitudinal 
performance and establish methods for identifying and 
addressing potential drift. 

Expanding Data Sets, Multi-Institutional Efforts
A longstanding obstacle to the development and 

implementation of AI technology is the availability of 
sufficient, high-quality, and representative data, which 
is necessary to prevent algorithmic bias and improve 
model robustness.46 The availability of such data would 
also increase feasibility of external testing, making it a 
justifiable expectation for model development. Data 
must be representative of the target population and 
unbiased to ensure model safety. 

Most existing models were developed using single-
institution data due to the lack of broad data sets. Most 
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health care data are not readily available for AI appli-
cations, contained within medical imaging archiving 
systems, electronic health records, and other systems 
that are difficult to consolidate. Data encoding is often 
inconsistent and requires great effort to standardize. 
These factors make it difficult to establish data sets of 
meaningful size. To increase data set sizes and popula-
tion heterogeneity, highly organized collaborative efforts 
between multiple institutions are necessary to combine 
and curate comprehensive data sets. Developing larger 
data sets across institutional borders can bring IO closer 
to having generalizable models as opposed to individual 
institutions developing unique models. Specifically, a 
tiered approach where cross-institutional data consoli-
dation is first performed on a city-wide basis may allow 
for gradual development of databases to reflect repre-
sentative populations. This requires greater collabora-
tion between institutions, while enforcing the same level 
of data protection. A potential solution for concerns 
about data sharing is federated learning, where patient 
data do not leave each hospital. This was demonstrated 
by PriMIA, an end-to-end method for medical imaging 
deep learning across multiple institutions.47 Such tools 
may enable model development across institutions 
without patient data leaving hospital systems. 

CONCLUSION
At present, there is a wealth of literature exploring 

the potential applications of AI to IO, with many dis-
playing promising results. However, the translation of 
these efforts to clinical practice is often unclear. The 
future of AI within IO is dependent upon the develop-
ment of infrastructure for standardized and responsible 
clinical implementation. Achieving this will require 
greater collaborative efforts within the field and fre-
quent evaluation of long-term trajectory.  n
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