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A
rtificial intelligence (AI) is a computational 
approach to problem-solving commonly associ-
ated with human intelligence. Recently, AI has 
experienced a surge applied to many fields, 

including finance,1 transportation,2 and health care.3,4 
Many studies have explored the application of AI in 
radiology.5-11 With AI’s growing capabilities to analyze 
images, review large data sets, and constantly learn from 
new data, it has potential to transform interventional 
oncology (IO). The purpose of this article is to review the 
applications of AI in IO. Some of these applications have 
been tested and presented at meetings or published; 
other potential applications are inferred from applica-
tion of AI in other fields. 

DEFINITION OF ARTIFICIAL INTELLIGENCE
AI uses computing power to analyze data and perform 

complex tasks involving pattern recognition or problem-
solving. A subset of AI is machine learning (ML), where 
a computer “learns” a task from data by automatically 
improving through repeated experiences.12 In contrast to 
other forms of AI, the ML system independently learns 
without explicit hard-coded “if-then” instructions. 

Artificial neural networks (ANNs) are a specific type of 
ML that automatically learn relationships using “artificial 
neuron” layers. Deep learning involves the use of ANNs 
that have a large number of artificial neuron layers to 
learn more complex relationships. In the case of convo-
lutional neural networks (CNNs), “convolutional” layers 
perform image analysis in a manner somewhat similar to 
the connectivity pattern of the retina and visual cortex. 
AI can be applied along the entire clinical continuum of 

IO, from research/outcome analysis to clinical applica-
tions for diagnosis, patient selection, order scheduling/
workflow, and intraprocedural guidance. 

RESEARCH WITH ARTIFICIAL INTELLIGENCE: 
BIG DATA AND OUTCOME REPOSITORIES 

AI has potential to impact outcomes research in IO. 
The traditional paradigm for clinical research involves 
starting with a retrospective study, conducting prospec-
tive clinical trials that span several years, and forming 
clinical management guidelines (combining existing data 
from these trials with expert opinion and consensus). 
A limitation of this approach is that these efforts are 
often independent, resulting in the release of several 
conflicting management algorithms.13-17 Moreover, the 
current clinical research process is incremental, usually 
involving the manipulation of one clinical variable. In 
reality, several clinical variables may affect a particular 
outcome, and relationships may not be linear. Because 
the current process is time-consuming, expensive, and 
cumbersome for one variable alone,18,19 it is not usually 
feasible to simultaneously evaluate multiple variables. 

Consider a different paradigm in which a standardized 
organized effort is made to collect multi-institutional 
pre-, intra-, and postprocedural data.20 This information 
can then be stored in centralized databases that can 
be continuously analyzed by ML systems. Clinical ques-
tions can be translated into ML prediction algorithms, 
which can eventually act as a substitute for retrospec-
tive studies. These trained models can be validated with 
prospective data, with a continuous cycle of prospective 
validation and model optimization. Unlike the incremen-
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tal approach of single-variable studies, the entire clinical 
picture can be explored with inclusion of an unlimited 
number of variables. Management guidelines can then 
become more personalized, combining preset robust 
clinical variables prospectively validated by these ML sys-
tems and the output of a patient’s entire clinical picture 
fed through ML models. 

 
POTENTIAL CLINICAL APPLICATIONS IN 
INTERVENTIONAL ONCOLOGY

In addition to impact on research, AI has potential to 
improve clinical care in IO. ML may be utilized to review 
preprocedural images for improved lesion detection and 
characterization and make assessments to predict the 
success of various IO procedures.   

Lesion Detection
Earlier identification of tumors is important for 

improving care of IO patients, allowing for more 
curative-intent IO therapies (eg, ablation) to be utilized. 
In this manner, ML techniques can assist in diagnos-
ing malignant lesions earlier. A recent study utilized 
CNNs to distinguish between different classes of liver 
masses on CT examinations.21 The study utilized select 
two-dimensional slices of three phases of contrast-
enhanced CT as input to train a CNN model. “Ground 
truth” output consisted of labels for five categories of 
lesions, ranging from classic hepatocellular carcinoma 
to hemangiomas and cysts. Median lesion classifica-
tion accuracy was 84% with an area under the receiver 
operating characteristic curve of 0.92 for malignant and 
benign/determinate lesion classification. Similar to this 
research, ML has also been used for breast cancer imag-
ing and prostate cancer MRI.22-27

Lesion Characterization/Outcome Prediction and 
Radiomics

Predicting tumor response to IO treatment options is 
critical to the future success of IO techniques. A recent 
study investigated the use of ML to predict tumor 
response to transarterial chemoembolization (TACE) 
using retrospective data from hepatocellular carcinoma 
patients.28 The goal was to predict responders versus 
nonresponders from baseline clinical, laboratory, demo-
graphic, and imaging data. Input data were prescreened 
by filtering out features demonstrating low variance and 
low contributions to the outcome. Logistic regression 
and random forest techniques were utilized for the ML 
model. Although this was a feasibility study in a small 
patient cohort with simple ML techniques, building 
upon this approach may eventually result in tools that 
optimize patient selection for TACE. 

Another approach for outcome prediction is use of 
radiomics, which is the assessment of tumor biology 
aspects not readily discernible to the human eye on imag-
ing. Radiomics analysis consists of extracting subvisual 
quantitative imaging features and assessing the correlation 
to patient prognosis and treatment response. Two small 
abstracts presented at the 2018 Society of Interventional 
Radiology (SIR) meeting showed that preablation 
radiomics improves survival prediction in patients with 
adrenal metastasis who underwent ablation.29,30 Further 
studies can utilize ML techniques to analyze preablation 
images and predict treatment success based on texture 
analysis correlated to follow-up imaging.

Tumor Board Recommendations 
In the realm of interdisciplinary decision-making, ML 

can also be used to improve tumor board recommen-
dations and help in triaging oncology patients to the 
appropriate treatments. A study presented at the 2017 
SIR meeting utilized an ML approach to identify the rela-
tive importance of clinical and imaging features contrib-
uting to tumor board recommendations.31 Data involv-
ing a combination of clinical and imaging characteristics 
were collected from 76 training cases and presented to 
a multidisciplinary team consisting of specialists from 
interventional radiology, radiation oncology, medical 
oncology, surgical oncology, and transplant. Input data 
included the number of enhancing lesions, largest lesion 
size, Organ Procurement and Transplantation Network 
(OPTN) classification, model for end-stage liver disease 
score, and Child-Pugh score. The output for each data 
set was the tumor board treatment recommendation. 
A random forest algorithm model was utilized. The 
model found a set of highly predicted features, including 
lesion size, segments involved, enhancing lesions, patient 
age, and number of OPTN 5 lesions. 

 
Order Scheduling/Workflow

Critical to a successful practice is the smooth transi-
tion of a patient through an interventional radiology 
department. ML tools are currently being used to 
enhance clinical decision support.32 They are also being 
applied for intelligent scheduling, with the goal of reduc-
ing missed patient appointments.11 Similarly, ML and 
predictive analytics are being used to identify patients at 
high risk for missing their radiology care appointments.33

Intraprocedural Planning
Most directly relevant to the interventional oncologist 

is the application of AI to intraprocedural guidance—for 
both embolic and ablative therapies.34 Computational 
methods can be used to fuse images with registration 
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algorithms, allowing the combination of detailed high-
resolution preprocedural images with real-time intrapro-
cedural images. Because these algorithms can predict an 
output based on a certain input, data related to catheter 
position, therapeutic effect, and patient outcomes can 
theoretically be fed through AI systems to predict patient 
outcome from intraprocedural catheter position. For abla-
tion, therapeutic effect can be optimized by algorithms 
that guide probe placement, estimate ablation margins, 
select energy settings for thermal energy deposition, and 
minimize collateral damage to nearby structures.

Limitations and Challenges
Although the aforementioned studies and ideas lay the 

groundwork for integrating ML into IO, several impor-
tant elements are necessary to bridge the gap between 
proof of concept and successful clinical translation. Due 
to limitations in data availability at single institutions, 
most currently published studies utilize small subsets of 
data that may not accurately simulate a realistic clinical 
practice environment. On the other hand, formation of 
large multicenter databases can allow for development 
of more robust algorithms that more closely simulate 
reality. In this setting, more heterogeneous data sets can 
be used to help models learn from cases with higher 
variability. Additionally, larger data sets allow for models 
that can technically accommodate multiple modalities, 
parameters, and time points as input, providing a more 
complete input set for decision-making. 

In addition to employing large multicenter databases, a 
few other possible approaches can improve clinical appli-
cability of AI systems. Although initial proof-of-concept 
algorithms could focus on including “ideal” data input, 
these models may break down when analyzing de novo 
information that does not follow simple classical patterns. 
Thus, it is important to eventually incorporate more “chal-
lenging” cases into training data sets, including atypical 
data and cases with artifacts or incomplete data. 

Additionally, well-annotated data sets are crucial to the 
validity of any AI system. This can be accomplished by 
having multiple physicians assign labels, allowing for inter-
reader variability to be compared to produce higher-qual-
ity “ground truths.” Moreover, techniques that utilize only 
one set of input data (eg, imaging data) may not provide a 
balanced global perspective; therefore, ML models can be 
optimized for clinical relevance by incorporating multiple 
input sources, including imaging, textual, and other clinical 
information. The creation of large data sets and defining 
standards that meet clinical practice guidelines are criti-
cal to the success of this approach. The National Cancer 
Institute’s Annotation and Image Markup model is an 
example used to standardize images.35

From a more technical perspective, ML systems that 
function as a “black box” (ie, provide a prediction with-
out explanations) are less likely to gain clinical accep-
tance, because they do not provide a mechanism for 
predicting technical mistakes. This can be remedied by 
developing algorithms that provide evidence for predic-
tions and are capable of quantifying uncertainty. Finally, 
such models should be flexible and dynamic, easily 
adapting to the latest clinical guidelines and research 
findings for continuous improvement.

CONCLUSION
Despite the recent surge of AI in medicine, the appli-

cation to IO is still in its infancy. An expanding body of 
data are increasingly demonstrating its potential to revo-
lutionize the field. As described, AI has the potential to 
transform the entire clinical continuum of IO care. With 
an established pioneering history of blending technology 
with clinical care, interventional radiologists are ideally 
suited to lead these developmental and clinical transla-
tion efforts. In this manner, interventional radiologists 
can carve out a custom path for AI in IO, incorporating 
AI as their own tool to provide patients with optimal 
minimally invasive clinical care.  n
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