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C erebrovascular disease covers a wide range 
of conditions that pose a significant risk of 
severe, potentially life-threatening sequelae 
largely due to ischemic and hemorrhagic 

stroke. Management involves a balance between alle-
viating the risk associated with the natural history of 
the disease process and avoiding deleterious iatrogenic 
complications associated with highly technical inter-
ventions. Therefore, prompt diagnosis and judicious 
decision-making are crucial for averting poor patient 
outcomes, making the field ideal for the application of 
artificial intelligence (AI) and machine learning.

This review aims to provide a comprehensive assess-
ment of AI technologies utilized in cerebrovascular 
disease, focusing on diagnosis of and outcome predic-
tion for acute ischemic stroke (AIS), intracranial aneu-
rysms (IAs), and brain arteriovenous malformations 
(AVMs). An extensive literature review was conducted 
to identify recent studies employing the latest AI and 
machine learning techniques, and we present the clini-
cal significance of AI in cerebrovascular disease, enabling 
practicing neurointerventionalists to grasp its current 
and future potential applications.

ISCHEMIC STROKE
Stroke Detection

The diagnosis of AIS hinges on timely and precise 
imaging techniques. Although noncontrast CT is typically 
the initial step in suspected stroke cases, its limited sensi-
tivity restricts its utility mainly to ruling out intracerebral 
hemorrhage.1 Conversely, MRI diffusion-weighted imag-
ing (DWI) surpasses noncontrast CT with a sensitivity of 
at least 83% in detecting early AIS.1 This method has not 
proved more effective than CT. However, challenges in 

MRI accessibility and availability lead to potential diag-
nostic delays. Hence, attempts have been made to inte-
grate AI to improve time to diagnosis.

AI excels in detecting subtle findings imperceptible to 
human observers.2-4 For example, Lu et al developed a 
deep-learning model comprising two deep convolutional 
neural networks (CNNs) to enhance the identification 
of AIS. The first CNN acted as a localization tool, outlin-
ing suspicious regions of infarction on preannotated CT 
scans. Subsequently, the output fed into the second CNN, 
a classification model that assigned a probability of AIS to 
each case. Following training, the model underwent both 
internal and external validation demonstrating robust 
performance across various metrics. Notably, it outper-
formed two experienced radiologists and enhanced their 
performance, highlighting the potential synergy between 
human expertise and machine assistance.4

Time of Stroke Onset
The time elapsed since the onset of stroke symptoms 

is pivotal in treatment decisions, yet this information isn’t 
always readily available, as up to 25% of AISs occur dur-
ing sleep.5-7 Thomalla et al demonstrated that combining 
DWI and T2-weighted fluid-attenuated inversion recovery 
(FLAIR) imaging can estimate stroke onset within 4 to 
5 hours.8 However, identifying this mismatch is challeng-
ing even for experienced radiologists. Recent research 
suggests deep learning can enhance detection, outper-
forming human interpretation.9,10 Polson et al developed 
a deep learning model to predict stroke onset time within 
the tissue plasminogen activator window and reached an 
area under the curve (AUC) of 0.814, which was signifi-
cantly improved compared to a baseline of three neurora-
diologists utilizing DWI-FLAIR mismatch.10
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Large vessel occlusion (LVO) is a major reversible cause 
of AIS,11-13 and rapid identification of LVO is crucial in 
initial stroke assessment. AI has become pivotal in this 
regard, leading to platforms like Rapid CTA (RapidAI), 
Viz LVO (Viz.ai), and aiOS (Aidoc) with commendable 
sensitivity and specificity.14,15 Mobile stroke units (MSUs) 
are specialized ambulances equipped with basic CT capa-
bilities; however, the quality can be suboptimal. Recent 
studies have demonstrated AI’s efficacy in detecting LVO 
using CTA scans from MSUs.16 Despite MSU CTA limita-
tions in visualizing ischemic events due to image quality 
variations and early acquisition post–stroke onset, Czap 
et al developed a model that achieved an AUC of 0.84 on 
in-hospital CTAs and 0.80 on MSU CTAs.16 These findings 
highlight the potential of MSUs, coupled with proficient 
AI algorithms, to expedite acute diagnoses. 

Predicting Outcomes After Stroke
Clinicians navigating the complexities of stroke man-

agement often face the added challenge of addressing 
the concerns of patients’ families regarding both short- 
and long-term prognoses. Predicting these outcomes 
involves considering various factors, including clinical 
symptoms, radiologic findings, medical history, and 
available treatment options at the time of assessment. 
ASPECTS (Alberta Stroke Program Early CT Score) 
emerged as a valuable tool for forecasting outcomes fol-
lowing a middle cerebral artery stroke by quantifying 
ischemic changes using noncontrast head CT.17 Originally 
designed to identify candidates for thrombolytic therapy, 
ASPECTS has since aided decisions about which patients 
might benefit from mechanical thrombectomy.18-20

Initially, manual ASPECTS interpretation was cumber-
some and prone to variability due to human error.21,22 
However, the advent of commercially available AI soft-
ware, such as Rapid ASPECTS (RapidAI) and e-ASPECTS 
(Brainomix), has automated this process, enhancing 
interrater agreement.23-25 Additionally, several studies 
have developed models capable of generating ASPECTS 
scores from CT scans, showing strong agreement with 
scores derived from DWI.26,27 These AI-driven advance-
ments have surpassed the performance of experienced 
clinicians, suggesting AI’s potential role in managing AIS 
beyond diagnosis.

Furthermore, AI models have been deployed to fore-
cast outcomes following AIS. AI has been leveraged to 
predict negative sequelae of stroke, including malignant 
cerebral edema and hemorrhagic transformation.28-31 
Such predictive tools may allow clinicians to gauge 
disease severity earlier in stroke patient management. 
Various studies have aimed to develop AI algorithms 
for predicting functional outcomes at different post-

discharge stages,32-34 indicating significant promise for 
prognostication after stroke. 

INTRACRANIAL ANEURYSMS
IAs affect about 2% to 3% of adults and pose a risk 

of rupture with a high mortality rate. The purpose of 
intervention is to mitigate the risk of rupture in the 
future.35-37 Current models for quantifying the risk of 
rupture rely on patient-specific risk factors such as 
hypertension and tobacco use and radiographic fea-
tures such as aneurysm location and morphology; how-
ever, these methods remain imperfect. AI, especially 
deep learning algorithms, offers promise in enhancing 
aneurysm detection and prognostication.

Aneurysm Detection
Digital subtraction angiography (DSA) remains the 

gold standard for diagnosis due to its high sensitivity in 
detecting aneurysms of all sizes.38 However, two-dimen-
sional (2D) modalities such as CTA and MRA have sev-
eral advantages, including being noninvasive, less expen-
sive, and more widely available. Thus, work has gone into 
amplifying their sensitivity using AI. CNN classifiers have 
shown promising results, with reported sensitivity rang-
ing from 79% to 100%.39-43 Various algorithms such as 
RAG (retrieval-augmented generation) and U-Net have 
been examined. For example, Hainc et al used a commer-
cially available AI system on 2D images, demonstrating a 
sensitivity of 79%.40 With improvements, this application 
of AI may provide benefit to less experienced interven-
tionalists or in resource-limited settings. 

With regard to stratifying IA instability, Bizjak et al 
demonstrated the application of models in predicting 
IA growth based on morphologic features.44 Utilizing 
CTA and MRA scans, they employed “deep shape” 
learning via the PointNet++ model to predict future 
aneurysm growth and rupture, achieving high sensitiv-
ity and accuracy.44 Xiong et al developed an AI model 
using a support vector machine algorithm, which 
outperformed the commonly used PHASES score in 
predicting aneurysm rupture, identifying maximum 
size, location, and irregular shape of the IAs as major 
predictors.45

The highest predictive capacity for assessing rupture 
risk in IAs emerges when algorithms integrate hemo-
dynamic features and clinical information.43,46-48 Chen 
et al found that hemodynamic features were more 
significant predictors than imaging alone, demonstrat-
ing comparable performance to logistic regression 
modeling.46 Similarly, integrating hemodynamic fea-
tures improved accuracy across metrics in various AI 
algorithms.47
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Predicting Outcome
AI has broadened its scope to not only predicting 

clinical outcomes but also forecasting occlusion rates 
after endovascular intervention. Various AI systems like 
elastic net and U-Net have been employed, yielding sen-
sitivities from 75% to 98%.49-52 Paliwal et al analyzed 84 
internal carotid artery sidewall aneurysms treated with 
flow-diverting stents, incorporating AI algorithm param-
eters such as hemodynamics and morphology metrics,49 

achieving 90% accuracy for IA occlusion. 
Jadhav et al used AI techniques to predict occlusion 

of bifurcation aneurysms using intrasaccular flow-
diverting devices.52 Random forest modeling integrating 
clinical and imaging features exhibited the highest accu-
racy of 75.3% and sensitivity of 91.8%. Shiraz Bhurwani 
et al investigated radiographic outcomes at 6 months 
for patients treated with flow-diverting stents, achiev-
ing an average sensitivity of 0.92 but a specificity 
of 0.57.50 The DIANES (IA diameter, indication, parent 
artery diameter ratio, neck ratio, side branch artery, and 
sex) score developed by Guédon et al achieved 89% 
sensitivity and 81% accuracy, emphasizing the role of 
imaging and clinical factors in predicting occlusion.51 
Williams et al introduced the Aneurysm Occlusion 
Assistant, utilizing open-source libraries including Keras, 
TensorFlow, and scikit-learn, alongside angiographic 
parametric imaging and segmented DSA imaging, 
which predicted 6-month occlusion within 7 seconds 
post–device placement, with an accuracy of 0.84.53 
These studies highlight the potential for AI to influence 
procedure planning as well as decision-making during 
intervention.

ARTERIOVENOUS MALFORMATIONS
Brain AVMs are congenital lesions that are character-

ized as an abnormal tangle of connected arteries and 
veins without intervening capillary beds. They most 
commonly present with intracerebral hemorrhage with 
high rates of morbidity and mortality. Management 
options include surgical resection, stereotactic radio-
surgery, and/or endovascular embolization. Similar to 
IAs, the decision to treat unruptured lesions is centered 
around predicting the lifetime risk of rupture, which 
remains an imperfect art and has resulted in several AI 
applications. 

Saggi et al employed AI algorithms, including random 
forest models and gradient-boosted decision trees, to 
predict hemorrhage risk in 189 pediatric AVM patients, 
identifying smaller AVM sizes, left-sided AVMs, and 
concurrent arterial aneurysms as predictors not dis-
cernible through conventional methods.54 In adults, 
Oermann et al developed a three-dimensional surface 

AI algorithm accurately forecasting adverse events post-
radiosurgery in 1,810 AVM patients, with comparisons 
to established scoring systems yielding AUC values 
from 0.6 to 0.7.55 Jiao et al investigated AI-based indica-
tors for postoperative motor deficits in AVM resection 
recipients, achieving the highest AUC of 0.88 compared 
to the Spetzler-Martin grading scale.56,57

CONCLUSION
Prediction and risk stratification are at the heart of 

diagnosis and treatment of cerebrovascular disease, 
making it ideal for the adoption of AI. Over the last 5 to 
10 years, significant work has been devoted to the devel-
opment of AI technology applied specifically to cerebro-
vascular disease. Despite its relative nascency, some AI 
software has already been implemented in the clinical 
setting underlining the potential of AI in this realm. 

As we gather more robust data to input, AI algorithms 
will continue to improve and impact management of 
cerebrovascular pathology, resulting in improved cost-
effectiveness and, more importantly, patient outcomes. 
It is only a matter of time before AI is ubiquitously used 
in the neurointerventional sphere and revolutionizes 
clinical care of cerebrovascular disease.  n
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