
66 ENDOVASCULAR TODAY MAY 2023 VOL. 22, NO. 5

L I M B  P R E S E R VAT I O N

Chronic Limb-Threatening 
Ischemia in the Era of AI
Improving patient care, current data, and the potential of artificial intelligence in CLTI treatment. 

By Elsie Gyang Ross, MD, MSc 

In his 2011 oft-quoted The Wall Street Journal op-ed, 
Marc Andreessen (a successful venture capitalist in 
Silicon Valley) fervently detailed “Why Software Is 
Eating the World.”1 By this, Andreessen meant that 

after decades of technologic progress in computing, 
storage, and the internet, we had finally reached a point 
where companies were creating viable solutions that 
would more efficiently handle an array of tasks such as 
sell books (Amazon), connect friends (Facebook), and 
stream entertainment (Netflix). He also quipped that 
software would change health care. In some ways it has—
electronic health records (EHRs) and their use exploded 
in the 2010s. However, there remains huge opportunities 
to leverage the software revolution in health care, namely 
through the application of artificial intelligence (AI). 

Limb salvage is a large undertaking, with varied patient 
phenotypes, increasing technologies and clinical programs 
to address specific issues, and very few clinical trials that 
provide high-quality evidence on what to do for the 
patient with chronic limb-threatening ischemia (CLTI) 
(eg, BEST-CLI and BASIL-2). Even with this new, high-
quality evidence, how do we improve medical and surgical 
decision-making for patients who did not meet inclusion 
criteria for the clinical trials we rely on for evidence? This 
is where AI can help, by processing large amounts of data 
and learning what works for a patient with a specific set of 
demographic, clinical, and anatomic considerations. 

USE CASES
Wound Identification and Management

Chronic, nonhealing wounds affect approximately 
6.5 million Americans and cost an estimated $5 billion 
to treat each year (2009 estimates).2 In Europe, approxi-
mately 1.5 to 2 million individuals are likely to have chronic 
wounds at any one point in time, and costs in the United 
Kingdom have been estimated to be over £5 billion 
(2013/2014 estimates).3-5 Given how long ago these studies 

were conducted, the cost, prevalence, and overall impact 
of wounds are likely to be much higher as our popula-
tions have aged and developed more severe comorbidities 
amidst a diabetes and obesity epidemic. Furthermore, 
although data on wound care are murkier across the world, 
conditions leading to chronic wounds such as diabetes are 
expected to most rapidly increase in Asia, Africa, and South 
America.6 AI can significantly impact wound identification 
and management in a wide variety of settings. 

Most patients who develop a wound present to non-
specialists who must be able to characterize and treat a 
wound to the best of their ability. However, delays in rec-
ognizing the underlying etiology of a wound can increase 
risk of poor outcomes. For over a decade, dermatologists 
and technologists have worked to train advanced deep 
learning algorithms to distinguish malignant from benign 
skin lesions, with some success. More recently, DermAssist 
(Google Health) aims to help people identify > 200 skin, 
hair, and nail conditions in minutes by using a mobile 
phone camera and answering a few questions. Such tech-
nologies could be used to help clinicians identify wounds 
with worrying characteristics that would benefit from 
earlier specialist referral. Indeed, early findings in the area 
of wound characterization using deep learning algorithms 
are promising, yet much work remains.7,8 Given the vast 
number of patients we see with wounds, creating robust 
data sets to train cutting-edge algorithms and evaluating 
how their application can change wound care manage-
ment will be important areas of contribution for the 
endovascular specialist going forward. 

Deep Phenotyping for Optimal Treatment Strategies
In 2014, Mills et al published a comprehensive wound 

grading system that could be used to characterize patients 
with CLTI more accurately and predict limb outcomes at 
1 year.9,10 The Society for Vascular Surgery’s lower extrem-
ity threatened limb classification system, also known as 
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the WIfI (Wound, Ischemia, foot Infection) score, pro-
vides an easily calculable metric that can be used to help 
guide treatment strategies for CLTI by considering the 
degree of tissue loss, perfusion, and presence and sever-
ity of foot infection.10,11 In 2019, guided by the goal of 
further improving the quality of care for CLTI, the Global 
Limb Anatomic Staging System (GLASS) was introduced. 
Similar to WIfI, GLASS has proved to be a useful tool for 
planning optimal revascularization strategies and risk-
stratifying patient outcomes, particularly after endovascu-
lar revascularization procedures.12-14 

Although WIfI and GLASS are more comprehensive 
than previous ischemia-related peripheral artery disease 
grading systems, other clinical factors that may drive 
treatment decisions and outcomes may not be well 
captured by these classification schemas. For example, 
patient frailty, typically calculated using a simple scoring 
system or short questionnaire, correlates with patient 
outcomes after vascular intervention.15,16 Because of the 
impact of frailty, the need to incorporate such measures 
into risk stratification strategies and during joint decision-
making discussions with patients is imperative. 

Although each of these frameworks (WIfI, GLASS, and 
frailty) may be simple enough to calculate individually, 
integrating data from these frameworks with additional 
available data will likely provide more powerful prognos-
tication tools. Furthermore, there may be more complex 
interactions between patient factors that cannot be 
well-modeled with simpler risk scores. One approach 
is to feed all these clinical data into machine learning 
(ML) algorithms that can handle large amounts of data, 
account for complex relationships, and be optimized for 
predicting a wide range of outcomes or providing more 
refined disease phenotyping. 

In a pioneering effort to use ML to identify unique CLTI 
patient phenotypes, Chung et al used high-quality clini-
cal trial data to develop an ML model that can be used 
to automate detection of unique patient groups with 
CLTI that are highly correlated with patient outcomes.17 
Using clinical trial data from a cohort of > 1,400 patients 
from the PREVENT III trial, investigators validated their 
approach of using an ML algorithm, known as topic mod-
eling, to identify unique subgroups of CLTI patients. These 
subgroups were then evaluated for a composite measure 
of amputation-free survival, resolution of ischemic rest 
pain, and wound healing. Investigators identified three 
distinct cohorts and found that each of these groups had 
distinctly different amputation-free survival rates, rates of 
wound healing, and relief of rest pain. 

Secondary analysis also identified that the most severe 
subgroup experienced death at twice the rate of the 
least severe subgroup. Interestingly, investigators found 

that wound and ischemia severity did not necessarily 
correlate with outcomes, meaning that some patients 
with milder wounds had worse outcomes than those 
with objectively more severe disease. This finding may 
be explained by the fact that investigators were able 
to capture a wider array of variables such as systemic 
disease and other comorbidities that affect outcomes 
outside of wound and perfusion-related characteristics. 
These efforts demonstrate that AI and ML can be used 
to automate identification of clinically significant patient 
groups, more efficiently integrating hundreds of data 
points. Also, AI models can account for a larger array of 
outcomes. Incorporating such deep phenotyping systems 
into clinical practice can be very important in disease 
states like CLTI where multiple important patient, envi-
ronmental, and system-level factors must be considered. 

Operative Planning
Currently, there are no widely available AI tools for pre- 

or intraoperative assistance for the management of CLTI; 
however, early work is underway. To date, most groups 
have focused on finding ways to automatically extract 
arterial segments of the lower extremity vascular tree 

Figure 1.  Example of automated data extraction and report-
ing that can be accomplished with AI. AK, above knee; 
AT, anterior tibial; BK, below knee; CFA, common femoral 
artery; PT, posterior tibial; SFA, superficial femoral artery; 
TASC, TransAtlantic Intersociety Consensus. Adapted from 
Flores AM, Demsas F, Leeper NJ, Ross EG. Leveraging machine 
learning and artificial intelligence to improve peripheral 
artery disease detection, treatment, and outcomes. Circ Res. 
2021;128:1833-1850. 
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using CTA or MRA.18,19 This automatic extraction enables 
further analysis that can identify lesions and severity of 
stenosis and may eventually assist in providing detailed 
reports that reduce time required for preoperative plan-
ning (Figure 1).20 AI can also be developed for intraopera-
tive use cases such as automated vessel rendering and 
tracking that can reduce radiation exposure. Automated 
calculation of GLASS score and overall case difficulty can 
help with planning endovascular approaches or encour-
aging open revascularization sooner. Furthermore, with 
enough cases, AI can be trained to determine which ves-
sels and to what extent they need to be revascularized to 
achieve wound healing in a particular patient. There are 
a number of other use cases, and as investigators tackle 
unique applications of AI for operative guidance, a focus 
on reducing case time, radiation exposure, and improving 
revascularization success should be of utmost focus. 

Patient Education
Poor patient health literacy is associated with a higher 

risk of poor outcomes such as amputation and death.21,22 
Developing tools that augment patient education can have 
a meaningful effect on patient understanding of their dis-
ease process, self-efficacy, and care. Large language models 
and their interfaces, such as ChatGPT (OpenAI) and Bard 
(Google), represent some of the latest and most conse-
quential advances in AI to date. Large language models are 
trained on a large corpus of data to perform a task that 
helps the model gain “understanding” (ie, develop a relevant 
representation) of large amounts of data. In the case of the 
underlying model for ChatGPT, it was trained on a large cor-
pus of text to predict the next most probable word. In doing 
so, you can now type nearly any prompt into ChatGPT and 
receive a reasonable response, including medical questions. 
Sarraju et al evaluated the appropriateness of ChatGPT’s 
responses to 25 preventive cardiology questions and found 
that 84% of the questions were answered appropriately, 
while four questions had inappropriate responses.23 

Similar experiments can be conducted to understand 
how much ChatGPT’s knowledge base understands CLTI 
from a patient’s perspective and how well this informa-
tion can be relayed to patients of different reading levels 
(eg, “Explain like I’m 5 years old what a toe ulcer is”; “what 
causes a toe ulcer”). In addition to its already astonishing 
abilities, ChatGPT can also be trained to improve its knowl-
edge base over time as more experts interact with it and 
correct its responses. 

EVOLVING SCIENCE
Advanced Algorithms 

AI is a rapidly advancing field and new approaches to 
using data to train intelligent systems continue to emerge. 

As discussed, large language models are one of the latest 
advances in AI. These models, also referred to as founda-
tion models, are being tested in their ability to understand 
clinical data such as data from EHRs.24 Preliminary work 
demonstrates that this approach shows promise in reduc-
ing the burden of developing AI models for specific clinical 
tasks. Instead of training individual models with a small 
subset of data, one can fine-tune a foundation model 
for a specific task and obtain the same or better results. 
Another approach that has gained a lot of traction in the 
health care space is known as distributed or federated 
learning.25 Given the importance of maintaining patient 
privacy, new approaches to learning from data from differ-
ent sites using different techniques of collecting data are 
needed. Federated learning approaches allow for creating 
AI technology that incorporates distributed data, theoreti-
cally improving the representation of patient diversity, 
model generalizability, and model accuracy over time. 

Multimodal Data Integration
Although the previous examples emphasize differ-

ent types of data (imaging vs clinical variables), the true 
power of AI will be unleashed by the use of multimodal 
data models. This refers to the integration of different 
types of data—imaging, clinical, genetic, and/or pro-
teomic data.26 Such data integration can provide more 
precise understanding of unique patient characteristics 
and can be used prospectively to validate what types 
of treatments are more likely to lead to improved out-
comes for patients globally and for different patient 
subgroups. For example, an AI solution that can identify 
different patterns of disease based on preoperative CTAs 
or diagnostic invasive angiography; automate calcula-
tion of WIfI, GLASS, and frailty, in addition to underly-
ing genomic and/or proteomic risk factors; and predict 
optimal treatment strategies, patient disease trajectories, 
and/or make recommendations for care can help unleash 
next-generation care paradigms and also help improve 
quality of care. Such technology instituted by health care 
systems can help identify care improvement opportuni-
ties across clinical, demographic, and socioeconomic 
patient groups. On an individual level, patients could 
obtain more guidance on what may or may not work for 
their particular set of circumstances. AI assistance can 
also help relieve cognitive burden and act as vital clinical 
decision support. 

POTENTIAL PITFALLS
Clinical Integration and Adoption

Vascular specialists have shown a propensity to adopt 
clinical devices and tools for direct patient treatment, 
but whether the willingness toward early adoption 
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will translate toward AI solutions is an open question. 
Although a lot of time and effort can be spent perfect-
ing an AI model, without considering who will adopt 
the technology, why, and how best to integrate AI into 
a clinical workflow, model adoption is likely to be low. 
Another important aspect of AI adoption will be pay-
ment and reimbursement. Although payment/reim-
bursement structures for health care vary widely across 
countries, it is important that the entity that dominates 
health care payments (eg, Centers for Medicare & 
Medicaid Services in the United States) supports the 
development of AI-assisted care through separate reim-
bursements for these technologies. 

Data Bias
Much of the AI technology built today arise from a few 

places (three states in the United States specifically).27 
Furthermore, investigators have found that AI technology 
can recognize race in medical radiographs, and this recogni-
tion can be hard to isolate or correct for.28 In essence, deep 
learning algorithms trained on certain medical imaging are 
anything but unbiased and this has several implications. 
First, if data sets are not enriched for a diverse patient 
group, technology may be built that systematically per-
forms poorly for certain groups. Furthermore, AI algorithms 
can inadvertently make predictions based on race alone. 

Given the problematic use of race as a construct in 
medicine, training AI technology on current medical data 
can very well perpetuate biased care. This knowledge 
requires AI developers to address potential for data bias 
early in project development. Such issues of bias can 
potentially be addressed by using data that represent a 
wide swath of the population, using algorithmic fairness 
modeling to identify any types of between-group bias early 
in model development and utilizing model surveillance 
checks (similar to FDA postmarket drug and device sur-
veillance) to ensure systemic bias is not being perpetuated 
by AI models in clinical practice. 

CONCLUSION
AI has the potential to improve the care and outcomes 

for patients with CLTI. Although there have been early 
promising results, there are no full-service AI platforms 
that currently serve this vulnerable patient population. 
However, the daily use of AI for our vascular patients will 
be inevitable. At the very least, as vascular specialists, we 
must pay attention to AI developments in medicine, and 
maybe even dream up our own utopian (or dystopian) 
vision of how AI will eat everything in health care.  n 
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