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|dentification of
Vulnerable Plaques

Various imaging methods allow evaluation in vivo.
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ulnerable plaques are defined as nonobstruc-

tive atherosclerotic lesions that are prone

to rupture, causing arterial thrombosis and

leading to, for example, acute coronary syn-
dromes (ACS) and stroke."? A deep understanding of
the pathophysiology of vulnerable plaque could play
a key role in optimizing the prevention and treatment
of arterial thrombosis, potentially reducing its morbid-
ity and mortality. We discuss the recent advances in
noninvasive and intravascular imaging that have sig-
nificantly improved the ability to evaluate vulnerable
plaque in vivo.>4

HISTOPATHOLOGY

Thin-cap fibroatheroma (TCFA) is defined as a lipid
plaque with a fibrous cap that is < 65 um thick and is
heavily infiltrated by inflammatory cells and macro-
phages, indicating the important role of inflammation
on plaque instability. Furthermore, neovasculariza-
tion of the arterial wall caused by the proliferation of
adventitial vasa vasorum may connect to intraplaque
hemorrhage, which is a common feature of advanced
lesions, with plaque rupture and luminal thrombi.’ It is
widely recognized that TCFA rupture with subsequent
thrombosis is the most common cause of ACS or sud-
den cardiac death.®

The second most common cause is plaque erosion, a
significant substrate for coronary thrombosis, followed
by calcified nodule, a less frequent entity.” Plaque ero-
sion is identified when serial arterial segment with
thrombus fails to reveal fibrous cap rupture; typically,
the endothelium is absent at the erosion site. Calcified
nodule refers to a protruding eruptive dense calci-
fied plaque with fibrous cap disruption and thrombi.®
Although pathology studies were instrumental for a
broad comprehension of vulnerable plaque, the poten-
tial selection bias and the analysis of a “single snapshot”
rather than having prospective longitudinal assess-

ments largely limited the refinement of our knowledge
in this setting. Noninvasive and intravascular imaging
could potentially overcome these limitations.

CT ANGIOGRAPHY

CT angiography has been well established for evaluat-
ing coronary artery stenosis.’ It also enables the assess-
ment of plaque characteristics, which are categorized
as positive remodeling, low attenuation plaques, and
spotty calcification in patients with ACS."®"" The ring-
like enhancement, another feature potentially associ-
ated with plaque rupture, has been defined as a low
attenuation region with adjacent circumferential thin
enhancement in a previous report by Tanaka et al.™
A subsequent study showed that the frequency of ring-
like enhancement was higher in the TCFA group than
in the non-TCFA group in images obtained by optical
coherence tomography (OCT).” Although CT angiog-
raphy enables the evaluation of the entire coronary sys-
tem in a noninvasive fashion, some limitations, such as
its reduced spatial resolution compared with intravas-
cular imaging modalities, should be taken into account.

MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) is capable of
detecting features of vulnerable plaque noninvasively,
such as intraplaque hemorrhage, a component of the
American Heart Association’s definition of type VI
plaque.’ This feature is observed as a high signal of
T1-weighted imaging and has been associated with
strokes of carotid origin.”>'® MRI can detect coronary
artery plaques, as well.""® A recent study showed
that the presence of coronary high-intensity plaques
obtained by T1-weighted imaging was significantly
associated with adverse coronary events.’ However,
coronary plaque imaging using MRI has been chal-
lenging due to reduced vessel size compared with the
carotids, as well as cardiac and respiratory motion.?
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INTRAVASCULAR
ULTRASOUND

Intravascular ultrasound
(IVUS) delivers 100-pum axial
resolution images of the arte-
rial wall. IVUS features that are
associated with plaque vulner-
ability include the presence of
an echolucent zone, calcium
deposits, and positive remodel-
ing.2"?2 Yamagishi et al dem-
onstrated that coronary sites
with an acute occlusion have
more echolucent zones com-
pared with sites without acute
events.?? Spotty calcium deposi-
tion is frequently observed in
patients with acute myocardial
infarction. Ehara et al demon-
strated that the average number
of calcium deposits within an
arc of < 90° per patient was
significantly higher in acute myocardial infarction than
stable angina pectoris (SAP), and calcium deposits were
significantly longer in SAP patients.? Spotty calcifica-
tions, especially those that are deep, are frequently
observed in lesions with ruptured plaque compared with
lesions without ruptured plaque.?* Although positive
remodeling was initially regarded as a protective pro-
cess in reducing effective luminal narrowing, it has been
associated with ACS.2° Prospective IVUS studies correlat-
ing vulnerable plaque features observed on IVUS with
adverse cardiovascular events are warranted.

VIRTUAL HISTOLOGY IVUS

Virtual histology (VH) IVUS data are collected with
a 20-MHz, 2.9-F phased-array transducer catheter that
acquires ECG-gated IVUS data. Briefly, VH-IVUS uses
spectral analysis of IVUS radiofrequency data to con-
struct color-coded tissue maps that label plaque into
four major components. The initial experience with
VH-IVUS has shown good sensitivity, specificity, and
predictive accuracy ranging from 80% to 92% in iden-
tifying the four plaque components (fibrous, fibrolipid,
necrotic core, and dense calcium) compared with histol-
ogy.” TCFA identified by VH-IVUS was more prevalent
in those with ACS than in stable angina patients.”

Recent longitudinal studies demonstrated that in
patients mostly with stable angina, the majority of the
TCFAs observed at baseline had healed at 12-month
follow-up, whereas untreated nonculprit lesions in
patients with ST-elevation myocardial infarction (STEMI)
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Figure 1. A fibrous cap is identified as a signal-rich homogenous lesion overlying lipid
plaque. The current methodology for determining fibrous cap thickness is based on man-
ual individual measurements of arbitrary points (A). A semiautomated method of measur-
ing fibrous cap thickness allows comprehensive quantification of fibrous cap thickness
and circumferential distribution (B).

frequently exhibited TCFA morphology that does not
change over a 13-month follow-up course.?** The
PROSPECT study demonstrated that nonculprit lesions
associated with recurrent ischemic events were more
likely to be characterized by a plaque burden = 70% or

a minimal luminal area = 4 mm?, or to be classified on
the basis of VH-IVUS as TCFA.3° This was the first trial
that investigated the natural history of vulnerable plaque
using IVUS. Despite the definition of TCFA derived from
VH-IVUS used in the PROSPECT trial, it is important to
highlight that this imaging modality does not have the
ability to accurately measure the thickness of the fibrous
cap due to its insufficient axial resolution. Recently,

the correlation between necrotic core size determined
by VH-IVUS and histopathology has been questioned;
therefore, further validation studies are required to com-
pletely elucidate the accuracy of VH-IVUS in detecting
vulnerable plaque.®

NEAR-INFRARED SPECTROSCOPY

The catheter-based near-infrared spectroscopy (NIRS)
has the potential to identify and quantify lipid core
plaques, as it can penetrate blood and several millime-
ters into the tissue. Lipid core plaques are defined as
fibroatheroma > 60° in circumferential extent, > 200 um
thick, with a mean fibrous cap thickness < 450 pm.3>33
Thus, NIRS can detect lipid core plaques in a map with
pullback position and degrees of circumferential extent;
however, it is unable to indicate the depth of lipid core
plaques. The current NIRS system is combined with IVUS
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as a single catheter. In a study using histopathology as
the gold standard, NIRS was able to identify lipid-rich
plaques more accurately than IVUS. Importantly, the
combination of NIRS and IVUS was more accurate than
both methods individually.34 Lipid core burden index,
one of the output values from NIRS that indicates the
amount of lipid in a scanned artery, and its combination
with remodeling index calculated by IVUS were cor-
related with OCT findings of lipid plaque and TCFA.3>3¢
Clinically, NIRS-IVUS might predict the occurrence of
periprocedural myocardial infarction during percutane-
ous coronary intervention by identifying extensive lipid
core plaques, most likely due to embolization of plaque
contents.”’

In addition, Oemrawsingh et al suggested in a single-
center, prospective, observational study that coronary
lipid core burden index obtained by NIRS in nonculprit
coronary arteries in patients with SAP and ACS has the
potential to be associated with major adverse cardiac
events during 1-year follow-up.3® Additional investiga-
tion is required, however, to clarify
whether NIRS findings can play a
role in the identification of vulner-
able plaque.

oCT

Intravascular OCT is a near-
infrared light-based imaging system
that delivers images with 10- to
20-um axial resolution. It therefore
enables visualization of blood vessel
wall microstructures in vivo at an
unprecedented level of detail.*

TCFA

OCT is the only imaging modal-
ity available for clinical use that is
capable of measuring the fibrous
cap thickness overlying a lipid
plaque, therefore enabling the
detection of TCFA. Kume et al
demonstrated that after account-
ing for tissue shrinkage during his-
tologic preparation, there is a good
correlation between OCT and his-
tologic examination in determin-
ing fibrous cap thickness (r = 0.9;
P < .001).“ Importantly, fibrous
cap thickness varies according to
the clinical presentation, as shown
by in vivo studies using OCT mea-
surements. Patients with STEMI
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Figure 2. Three-dimensional visualization
of longitudinal and circumferential distribu-
tion of fibrous cap. A representative case of
segmented fibrous cap in 3D rendering with a
continuous color map, from blue (fibrous cap
> 150 pm) to green (fibrous cap, 65-150 ym)
to red (fibrous cap < 65 pm).

were found to have a considerably thinner fibrous
cap in comparison with patients with non-STEMI and
stable angina.“! Takarada et al demonstrated that statin
therapy significantly increased the fibrous cap thick-
ness in patients with hypercholesterolemia at 9-month
follow-up.? Furthermore, ruptured TCFA observed in
the carotids has been demonstrated as a predictor of
transient ischemic attack or stroke.® Recent OCT study
showed that atorvastatin therapy at 20 mg compared
with 5 mg provided a greater increase in fibrous cap
thickness in coronary plaques of patients with unstable
angina pectoris.* However, the current methodol-
ogy for determining fibrous cap thickness is based on
manual individual measurements of arbitrary points (ie,
the thinnest regions determined by visual assessment),
which might cause high variability and reduced accu-
racy (Figure 1). Besides, such one-dimensional analysis
of fibrous cap thickness does not take into account the
three-dimensional (3D) morphology of coronary artery
disease, which largely limited the advancement of the
clinical knowledge in this field.
Aiming at overcoming this
important limitation of previous
studies, a semiautomated method
that allows comprehensive quan-
tification of fibrous cap thickness
and 3D visualization of its longi-
tudinal and circumferential distri-
bution along the vessel has been
investigated (Figure 2). The meth-
od has been found to be highly
accurate, yet more consistent than
human experts.*>“ Moreover,
Galon et al demonstrated that the
novel OCT-based 3D quantifica-
tion of the fibrous cap showed
thinner fibrous cap thickness and
larger areas of TCFA in nonculprit
sites of STEMI compared with
stable angina.#’ Although the
mechanisms of fibrous cap rupture
remain unclear, it is possible that
its mechanical stability may not
only depend on a focal, thin point,
but rather on the thickness of con-
fluent regions of thin cap distrib-
uted along the plaque. Therefore,
we need to further investigate in a
prospective fashion whether this
more comprehensive methodology
to identify and quantify different
fibrous cap thicknesses along the



plaque may refine our ability to predict future plaque
rupture and its devastating consequences.

Macrophages

Macrophage infiltration in the fibrous cap plays an
important role in the pathogenesis of plaque rupture.
OCT is the only imaging modality that can visualize mac-
rophages in vivo (Figure 3). Terney et al demonstrated
good correlation between OCT and histologic measure-
ments of fibrous cap macrophage density.”® Tahara et al
demonstrated in murine aortas that OCT shows excel-
lent correlation with histology in macrophage identifica-
tion.”® Recently, Di Vito et al demonstrated that OCT
was able to identify and quantify macrophage presence
in coronary artery specimens using tissue property
indexes (sensitivity of 100% and specificity of 96.8%).>
Although the identification of fibrous cap inflammation
in vivo by OCT still lacks correlation with clinical out-
comes, Galon et al demonstrated more inflammation in
the fibrous cap of nonculprit lesions of STEMI compared
with stable angina patients.”

Neovascularization

Neovascularization is a common feature of vulnerable
plaque. The high resolution of OCT enables the detec-
tion of neovascularization in vivo. Kitabata et al showed
that the high-sensitivity C-reactive protein levels in the
neovascularization group were significantly greater than
those in the non-neovascular group.® Tian et al showed
that in patients with ACS, culprit plaques with neovascu-
larization had vulnerable features such as thinner fibrous
cap, greater lipid arc, longer lipid core length, and more
frequent TCFA compared with those without neovascu-
larization.? Kato et al demonstrated that neovasculariza-
tion was more frequently located close to the lumen in
patients with ACS compared with non-ACS.>

Erosion and Calcified Nodules

OCT has the ability to distinguish the etiology of
coronary thrombosis. OCT-derived erosion is defined as
the absence of fibrous cap disruption and the presence
of thrombus. Calcified nodule is defined as fibrous cap
disruption detected over a protruding, superficial calci-
fied plaque. Jia et al demonstrated in patients with ACS
that 31% of the lesions were classified as erosion and
8% as calcified nodules.>* Furthermore, calcified nodules
were also observed by OCT in unstable carotid plaques.*®
However, OCT has some limitations to distinguish the
etiology of acute coronary thrombosis. First, the defini-
tions of plaque erosion and calcified nodule as detected
by OCT were not validated by pathology. Second, the
presence of (red) thrombus overlying the culprit lesion
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Figure 3. Macrophages are identified as signal-rich, conflu-
ent, or punctuate lesions (red arrow).

might preclude the ability to estimate plaque charac-
teristics. Finally, OCT does not have sufficient resolution
to detect a single layer of endothelium; therefore, the
pathologic definition of plaque erosion cannot be direct-
ly applied to OCT.

CONCLUSION

Although several imaging modalities have been
investigated for the detection of morphologic aspects
of vulnerable plaque in vivo with promising results, a
precise prediction of which plaques will cause future
adverse events is still lacking. Although OCT seems to
be the most suitable imaging system in this setting due
to its high resolution and unique ability to measure
fibrous cap thickness, neovascularization, and inflamma-
tion, potential methodologic limitations observed in the
majority of the studies that utilized OCT as reference
might have precluded a better understanding of this
complex scenario. A recent methodology that accounts
for the 3D nature of atherosclerosis distribution might
shed light on this topic in future prospective studies. B
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