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Neuromodulation in 
Heart Failure: Proven 
and Emerging Solutions
A summary of the pathophysiologic rationale and latest clinical evidence for the role of 

interventional neuromodulating therapies in treating heart failure. 
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H eart failure (HF) is a clinical syndrome involv-
ing cardinal symptoms, such as shortness of 
breath and fatigue, and clinical signs such 
as lung crackling and peripheral edema. HF 

is caused by structural myocardial damage, which 
leads to increased filling pressures and/or inadequate 
cardiac output during exercise and/or rest.1 HF is the 
most common cause of hospitalization in the Western 
world.1 Pathophysiologically, complex cellular, neuro-
humoral, and metabolic mechanisms contribute to HF.2 
According to left ventricular ejection fraction (LVEF), 
HF is classified as HF with reduced ejection fraction 
(HFrEF; defined as LVEF ≤ 40%), HF with mildly reduced 
ejection fraction (defined as LVEF of 41%-49%), and 
HF with preserved ejection fraction (HFpEF; defined as 
LVEF ≥ 50%).1 Pharmacologic therapy is based on five 
drug classes, including renin-angiotensin-aldosterone 
inhibitors, angiotensin receptor blockers/neprilysin 
inhibitors, mineral receptor antagonists, β blockers, 
and sodium-glucose cotransporter 2 inhibitors (SGLT2 
inhibitors).3-5 Treatment of HFpEF is especially challeng-
ing because no drug has been shown to consistently 
improve mortality. However, in a recent trial, the SGLT2 
inhibitor empagliflozin reduced the combined risk of 
cardiovascular death or HF hospitalization, mainly driv-
en by the lower risk of HF hospitalization.6 

Despite these recent advances, HF hospitalization 
rates and symptom burdens remain high in patients 
with HF. In addition to drug therapy, several inter-
ventional procedures for neuromodulation have been 
increasingly investigated in patients with HF. This article 
summarizes the pathophysiologic rationale and latest 

clinical evidence for interventional neuromodulating 
therapies investigated in HF, including catheter-based 
renal sympathetic denervation (RDN), unilateral electri-
cal baroreflex activation therapy (BAT), and endovascu-
lar BAT (Figure 1). 

CATHETER-BASED RDN
More than a decade ago, RDN was introduced as a 

minimally invasive approach for arterial hypertension 
treatment. By applying radiofrequency energy, ultra-
sound energy, or cryoablation or injecting alcohol in 
the perivascular space, RDN interrupts the activity of 
afferent and efferent sympathetic nerves surrounding 
the renal arteries, thereby reducing sympathetic nerve 
activity contributing to several cardiovascular diseases, 
including HF.7-13

In patients with hypertension, which is one of the 
most important risk factors for the development of HF, 
RDN has reduced left ventricular mass index14,15 and dia-
stolic filling pressures, thus improving cardiac remodeling 
and reducing congestion.15 In preclinical studies, RDN 
reduced renal sympathetic nerve and neprilysin activity.16 
However, clinical data investigating RDN in HF are scarce. 
In one first-in-human trial, seven patients with HFrEF 
on guideline-recommended therapy and controlled 
blood pressure underwent RDN; their symptoms of HF 
and submaximal exercise capacity improved (6-minute 
walking distance [6MWD] increased by 27.1 ± 9.7 m; 
P = .03).17 Moreover, in the SYMPLICITY-HF feasibility 
study, radiofrequency-based RDN was associated with 
reductions in N-terminal pro–B-type natriuretic pep-
tide (NT-proBNP) and improved glucose tolerance in 
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patients with chronic symptomatic HFrEF (New York 
Heart Association [NYHA] class II-III).18 A meta-analysis 
of five randomized controlled trials (RCTs) investigat-
ing the effects of RDN on HF demonstrated that RDN 
improved LVEF (by 6%) and exercise capacity (61-m 
increase in 6MWD) in patients with HFrEF on HF medi-
cation.19 These improvements were observed in the 
absence of blood pressure reductions. Another meta-
analysis of seven studies showed that RDN significantly 
reduced symptoms of HF and improved LVEF and 
congestion.20 Bilateral RDN increased the LVEF by 5.7% 
(95% CI, 1.6%-9.6%; P = .004) and decreased the heart 
rate by 4.5 bpm (95% CI, −8.2 to −0.9 bpm; P = .015) 
and the average NT-proBNP level by 520.6 pg/mL 
(95% CI, −1,128.4-87.2 pg/mL; P = .093).20

Although the pathophysiologic rationale for RDN in 
the treatment of HF is sound, RCTs are needed to eval-
uate the potential effects of RDN across the spectrum 
of HF. Further studies to investigate RDN are planned 
and ongoing (in HFrEF: NCT02329145, NCT01870310, 
NCT02085668, NCT02146794, NCT04947670, 
NCT02471729, NCT01790906, NCT01639378, 
NCT04719637; in HFpEF: NCT05030987, NCT02041130, 
NCT01840059).

UNILATERAL ELECTRICAL BAT
In patients with low blood pressure secondary to 

reduced cardiac output, reduced peripheral barore-
ceptor activity results in sympathetic nervous system 
activation.21 The activation of the sympathetic nervous 
system initiates a vicious cycle by upregulation of del-
eterious neurohumoral mechanisms (increased filling 
pressures, increased oxygen consumption).22,23 BAT is 
considered to counteract this vicious cycle. The pace-
maker-like device is surgically implanted in the pectoral 
pocket, and the electrode is placed on the carotid sinus. 
The device can stimulate the baroreceptors around 

the carotid sinuses, 
thereby increasing 
parasympathetic 
activity and decreas-
ing sympathetic 
activity.24-27 In an 
open-label study, 
11 patients with 
HFrEF received BAT. 
After 6 months, 
muscle sympathetic 
nerve activity was 
reduced and LVEF, 
NYHA class, and 
6MWD distance 
improved.28 Another 

study of 146 patients with HFrEF showed similar results, 
with improvements in NYHA class and 6MWD and 
reduced NT-proBNP levels.29 In the BeAT-HF trial, 
408 patients were enrolled and randomized to either 
BAT and optimal medical management or optimal 
medical management alone.30 BAT appeared to be 
safe, improved patient-centered outcomes (eg, health-
related quality of life, exercise capacity), and reduced 
NT-proBNP.30 Moreover, in a post hoc analysis of this 
study, BAT was examined in patients with and without 
coronary artery disease and showed that both patient 
subgroups may benefit.31 Across the entire spectrum of 
patients, NYHA class, 6MWD distance, and NT-proBNP 
were improved. Furthermore, no interactions were 
revealed between coronary artery disease and the effect 
of BAT. 

In 2019, FDA granted premarket approval to the 
Barostim Neo BAT device (CVRx), which is used to 
improve symptoms in patients with HFrEF who are 
ineligible for cardiac resynchronization therapy. In the 
2021 European Society of Cardiology HF guidelines, the 
evidence was considered insufficient to support specific 
guideline recommendations regarding the use of BAT.1

ENDOVASCULAR BAT
Catheter-based unilateral implantation of the 

MobiusHD self-expanding nitinol stent (Vascular 
Dynamics) in the proximal carotid artery increases its 
effective radius, resulting in increased wall stress and 
baroreflex activity without impairing pulsatility.32,33 By 
lowering sympathetic activation and increasing para-
sympathetic activation, functional improvements in HF 
patients are expected. Preliminary data from a first-in-
human trial (NCT04590001) to assess the safety and 
effectiveness of the MobiusHD device in 13 patients 
with HFrEF showed encouraging results after 3 months. 
Patients with HFrEF, functional NYHA class II to III, 

Figure 1.  Neuromodulating therapies under investigation for the treatment of HF.
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NT-proBNP > 400 pg/mL, and adequate sinus anatomy 
were included. After 3 months, 6MWD improved by 65 m 
(203 m at baseline vs 268 m at 3 months; P < .05), as did 
LVEF (34.4% at baseline vs 37.3% at 3 months; P < .05), 
NT-proBNP (1,349 pg/mL at baseline vs 877 pg/mL at 
3 months; P < .05), and subjective quality of life assessed 
by the Kansas City Cardiomyopathy Questionnaire 
(38 points at baseline vs 49 points at 3 months; P < .05) 
(Figure 2). The study documented no adverse events.

VAGAL NERVE STIMULATION
Being a very dynamic and evolving field, more 

approaches of neuromodulation in HF are under 
research. Of note, vagal nerve stimulation (VNS) has 
been tested clinically in HF patients. In VNS, which is 
already approved for the treatment of epilepsy and 
depression, an electrical lead is implanted in the mid-
cervical portion of the vagus nerve and stimulates the 
afferent vagus nerve fibers. First-in-human data from 
the two-phase CARDIO-FIT trial showed that VNS in 
HF patients (n = 32) appeared to decrease heart rate, 
improve NYHA functional class and 6MWD (from 
411 ± 76 m to 471 ± 111 m), as well as LVEF (from 
22% ± 7% to 29% ± 8%) while being safe.34 These find-
ings were supported by the ANTHEM-HF trial, which 
enrolled 60 patients with NYHA class II or III and LVEF 
< 40%. LVEF increased (by 4.5%; 95% CI, 2.4%-6.6%), 
as did 6MWD (by 56 m; 95% CI, 49-105 m) and NYHA 
class was improved as well (77% of patients improved) 
after 6 months.35 There were no device-related serious 
adverse events, but there were five nonserious adverse 
events.36 Feasibility and improved outcomes were stable 
after 12 months as well.37

However, the NECTAR-HF trial, which included 
96 patients who were randomized 2:1 to VNS treatment 

or control, did not 
show improvement in 
LVEF or NT-proBNP 
after 12 months. 
Nevertheless, subjec-
tive quality of life and 
NYHA class improved in 
treated patients.38 

Showing promising 
results, VNS appears to 
be a possible treatment 
strategy in patients 
with HFrEF and higher 
symptomatic burden. 
Additional studies for its 
optimal use should be 
conducted in the future.

CONCLUSION
Despite the widespread availability of well-tolerated 

and effective drugs, symptom control in HF patients 
remains unsatisfactorily low. Therefore, new therapeu-
tic options are mandatory. Some of the device-based 
neuromodulation therapies, such as RDN, have shown 
their effectiveness in improving the risk factors and 
comorbidities of HF patients. However, their role in 
treating HF remains elusive, and further RCTs to inves-
tigate possible benefits are much needed and ongoing. 
Choosing the right patients is of utmost importance, 
as most therapeutic approaches tend to decrease sym-
pathetic activity and increase parasympathetic activity. 
Therefore, patients with highly active sympathetic ner-
vous systems could benefit from interventional neuro-
modulation in addition to pharmacologic therapy. High 
sympathetic activity can be identified using different 
biomarkers, including plasma or urinary norepineph-
rine, tissue norepinephrine spillover, muscle sympathet-
ic nerve activity, baroreflex sensitivity, and heart rate 
variability.22 High plasma renin activity was a predictor 
for blood pressure–lowering efficacy of RDN in hyper-
tensive patients off antihypertensive medications.38 
Similarly, plasma renin activity might be a predictor for 
successful neuromodulation in HF as well. 

Notably, device-based therapies might pose pro-
cedural risks. However, a recent survey including 
192 patients demonstrated that patients with HF were 
willing to accept a single-digit risk of device-related 
mortality for an increase in 1-year survival with stable 
physical functioning.39 Therefore, patient education and 
a shared decision-making process are important to fur-
ther establish and improve neuromodulating devices in 
HF patients.  n   

Figure 2.  Preliminary data from NCT04590001 evaluating the MobiusHD device in patients with 
HFrEF, available at vasculardynamics.com.
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