

Transcatheter Mitral Valve Replacement: Current Challenges and Future Perspective

Is transcatheter mitral valve replacement a better solution for mitral regurgitation than transcatheter repair techniques?

BY PAVEL OVERTCHOUK, MD; JUAN F. GRANADA, MD; AND THOMAS MODINE, MD, PhD, MBA

itral regurgitation (MR) prevalence increases with age. Isolated MR has been estimated to be present in between 0.5% to 3% of the Western population who are 65 to 74 years old and in > 3% of the Western population who are 75 years or older; similar to aortic stenosis, it is responsible for increased mortality risk.¹⁻³ Surgical intervention on the mitral valve accounts for 5% to 10% of all surgical procedures.4 Despite the fact that interventional treatment remains the cornerstone of mitral valve disease therapy, intervention for MR is still an unmet need.5 The perceived invasiveness of open surgery and an insufficient consideration of MR to genuinely impact patient survival and symptoms might constitute some reasons for this unmet need, hence they are possible targets for research.

TRANSCATHETER MITRAL VALVE REPAIR

The MitraClip device (Abbott Structural Heart) was the first transcatheter mitral valve (TMV) developed with the aim to percutaneously reproduce the surgical Alfieri technique. ^{6,7} The recently published COAPT and MITRA-FR trials enrolled patients with severe secondary MR, moderate left ventricular dysfunction, and suitable anatomy for implantation. In the COAPT trial, a benefit was seen with MitraClip at 2 years in the form of reduced long-term mortality (29.1% vs 46.1% for the intervention and control groups, respectively;

hazard ratio [HR], 0.62; 95% confidence interval [CI], 0.46–0.82; P < .001) and rehospitalization for heart failure (35.7% vs 56.7% for the intervention and control groups, respectively; HR, 0.53; 95% CI, 0.40–0.70; P < .001).8

In the MITRA-FR trial, the rate of mortality at 1 year was 24.3% and 22.4% for the intervention and control groups, respectively; the rate of rehospitalization for heart failure was 48.7% and 47.4% for the intervention and control groups, respectively. Put together, COAPT and MITRA-FR showed that compassionate use of MitraClip does not save patient lives, nor does it reduce the risk of rehospitalization. However, selected patients with secondary severe MR associated with moderate left ventricular dysfunction and suitable anatomy for implantation could still benefit from MitraClip use.

The results of the RESHAPE-HF2 (NCT02444338; comparison against medical therapy) and MATTERHORN (NCT02371512; comparison against mitral surgery) trials might provide further insight into the appropriate use of MitraClip for the treatment of secondary MR. However, it is worth noting that despite extensive preoperative echocardiographic screening in COAPT, more than one clip was necessary in > 60% of patients (and three clips or more in 8% of cases) to achieve satisfactory reduction of MR.8 This underscores the device's lack of efficacy in achieving persistent low-grade MR

after the intervention. Implanting an excessive number of clips can yield a significant increase in transmitral gradient, which has been reported to be associated with worse outcomes.¹⁰ It is worth remembering that the Alfieri technique was described for primary MR, and one of the reasons it was abandoned was the high rate of recurrence and reoperation (10% at 5 years in the original cohort).⁶

The popularity of surgical mitral valve repair at the beginning of the century encouraged the development of numerous percutaneous mitral valve "plasty" devices (Table 1).^{11,12} After MitraClip, the valvular plasty device armamentarium was later expanded by the development of percutaneous annuloplasty (Cardioband, Edwards Lifesciences) and chordoplasty (NeoChord, NeoChord, Inc.; Harpoon, Edwards Lifesciences) systems. 13-15 A difficult learning curve and a lack of efficiency in resolving MR are among the main limitations of these devices, and they could be viewed as inherited from the surgical repair techniques that inspired them.¹³ Combining transcatheter repair techniques has been proposed to mitigate the lack of efficacy on MR resolution; however, this poses the question of increased complication risk and cost. 16,17 Perhaps valve replacement could provide a better option.

TRANSCATHETER MITRAL VALVE REPLACEMENT EXPERIENCE

Mitral repair is favored over replacement for open surgical treatment of MR in the international guidelines. However, this recommendation is based on observational data. Recent randomized data showed that replacement nearly eliminates the risk of long-term recurrence of moderate or severe MR at 2 years (58.8% after repair vs 3.8% after replacement). By avoiding the morbidity of open mitral surgery and effectively preventing recurrence of MR, TMV replacement could provide the best option (Table 2).

The first-in-human TMV replacement was performed in 2012 with the CardiAQ valve (Edwards Lifesciences). Since then, TMV replacement feasibility studies have been published on the Intrepid (Medtronic) and Tendyne (Abbott Structural Heart) devices, which were implanted transapically in patients at very high surgical risk. Thirty-day mortality was high (seven out of 50 patients in the Intrepid study and one out of 30 patients in the Tendyne study), but elimination of significant MR was constant. Following the example of the PARTNER and SURTAVI trials on transcatheter aortic valve implantation (TAVI), the first trials comparing TMV replacement with the Intrepid and Tendyne devices to open surgery are already underway (APOLLO, NCT03242642; SUMMIT, NCT03433274).

The principal limitation of these systems is their transapical delivery. Transapical delivery is a major limitation of TMV replacement compared to transseptally deployed TMV repair systems such as MitraClip. Experience with TAVI showed that the transapical approach is associated with higher bleeding risk, as well as residual left ventricular apex dysfunction.^{23,24}

Developing transseptally implantable devices will take time. The transition from the current 32- to 45-F transapical delivery catheters to transseptal-compatible delivery systems will require engineering modifications in size, valve design, and delivery methods. Perhaps adapting existing TAVI technology could be more efficient. Webb et al recently published their experience with the transseptally implanted Sapien M3 transcatheter heart valve (THV; Edwards Lifesciences).²⁵ The balloonexpandable Sapien M3 THV and its delivery system are a direct adaptation of the Sapien 3 TAVI system, and Edwards took advantage of the decade-long experience in TAVI development. In the reported experience, Sapien M3 was implanted in 10 patients who presented with primary and/or secondary MR. The technical success rate was 90%, with no stroke or death at 30-day follow-up. Numerous other transapical and transseptal TMV replacement safety and feasibility single-arm studies are also underway (TIARA-I, NCT02276547; HighLife, NCT02974881; RELIEF, NCT02722551).

Another challenge for TMV replacement device developers is the absence of a solid anatomic structure to anchor the THV in the mitral annulus. The valve calcification that rendered the implantation of TAVI devices stable in stenotic aortic valves is less frequent in mitral valves. However, even in patients with mitral annular calcification (MAC), technical success when using TAVI devices (valve-in-MAC procedures) was only 62.1%.²⁶ Previously surgically implanted bioprostheses and annuloplasty rings with recurrent regurgitation can also provide a rigid anatomic structure for THV implantation. In those patients, valve-in-valve (ViV) and valve-in-ring (ViR) procedures (TMV replacement with TAVI devices in degenerated mitral bioprostheses or failed annuloplasty rings, respectively) yielded better results than valvein-MAC procedures, with approximately 95% and 81% technical success rates, respectively.²⁶ More development and research are warranted to address the unmet need for severe MAC and degenerated mitral rings.

CHALLENGES AND FUTURE FOCUS

Patient selection is challenging. Traditionally used surgical risk estimators, such as the Society of Thoracic Surgeons risk score, fail to account for frailty, hostile chest, and anatomic compatibility with TMV intervention devices. Beyond ruling out an indication for open

TABLE 1. TMV REPAIR DEVICES IMPLANTED IN CLINICAL COHORTS								
Percutaneous Plasty Device	Study	Approach	Successful Implantation	30-Day Mortality	30-Day MR 2+ or More			
MitraClip	EVEREST II trial ⁵	Transseptal	178/178	2/178	41/178			
Pascal (Edwards Lifesciences)	Praz et al ¹²	Transseptal	18/23	3/23	7/19			
NeoChord	TACT trial, ¹⁴ Colli et al ³¹	Transapical	89/93	1/92	30/92			
Harpoon	TRACER trial ¹⁵	Transapical	28/30	0/30	3/27			
Cardioband	Messika-Zeitoun ³²	Transseptal	58/60	2/60	18/58			
Abbreviations: MR, mitral regurgitation; TMV, transcatheter mitral valve.								

TABLE 2. TMV REPLACEMENT DEVICES IMPLANTED IN CLINICAL COHORTS								
THV	Study	Approach	Successful Implantation	30-Day Mortality	30-Day Moderate or Severe MR			
Tendyne	Sorajja et al ³³	Transapical	96/100	6/100	1/94			
Intrepid	Bapat et al ²¹	Transapical (transseptal under development)	48/50	7/50	0/42			
Sapien M3	Webb et al ²⁵	Transseptal	9/10	0/10	1/10			
Tiara (Neovasc Inc.)	Verheye et al ³⁴	Transapical	7/8	0/7	0/7			
HighLife (HighLife Medical, Inc.)	Barbanti et al ³⁵	Transapical	2/2	1/2	1/1			
Abbreviations: MR, mitral regurgitation; THV, transcatheter heart valve; TMV, transcatheter mitral valve.								

surgery in the context of the heart team discussion, the insight provided by surgical risk estimators is limited. Besides operability, TMV interventions require preoperative feasibility screening to verify mitral anatomy compatibility and pathway practicability. Finally, the possibility to reintervene will be crucial as long as device durability remains uncertain. TMV repair devices (such as MitraClip) can be combined with annuloplasty devices (such as Cardioband); although subsequent transcatheter replacement would be impossible, ViV transcatheter replacement would be feasible.

TMV replacement is not without risks. One of the most feared complications is left ventricular outflow tract (LVOT) obstruction because of its major impact on procedural mortality. In a study by Yoon et al, patients with LVOT obstruction had a higher rate of mortality than patients without LVOT obstruction (34.6% vs 2.4%; P < .001).²⁷ Preoperative CT plays an important role in the eligibility screening of patients with three-dimensional reconstructions and the simulation of potential interaction between patient anatomy and future mitral THV. A threshold of simulated neo-LVOT area $\leq 1.7 \text{ cm}^2$ on CT has been proposed. However, further research is warranted as the provided threshold seems optimizable

because it was obtained in a valve-in-MAC, ViV, or ViR population treated with a TAVI device.²⁷ Various factors have been identified that contribute to LVOT obstruction, specifically device protrusion into the left ventricle, anterior leaflet displacement, and narrow aortomitral angle.^{28,29}

Patients treated with TMV replacement are younger than those treated with TAVI because mitral valve disease affects younger patients.³⁰ Also, the younger the patients, the higher the risk of structural valve deterioration. Structural valve deterioration is more frequent in patients with bioprostheses in the mitral position than in the aortic position, which may be due to higher closing pressure. All of these concurrent factors will rapidly render the issue of bioprosthesis durability an important focus for TMV replacement devices.

Heart prostheses implanted percutaneously differ from those implanted surgically and require proper antithrombotic management. As numerous randomized trials are currently investigating several antithrombotic options to avoid aortic THV thrombosis, this is likely to become even more important for the mitral prostheses because the mitral position is at higher thrombotic risk than the aortic.³⁶ International guide-

lines have yet to address this issue, and future research will need to investigate the important question of whether anticoagulation should be preferred to antiplatelet treatment and how long the treatment should be continued in the absence of concurrent indications for anticoagulation, such as atrial fibrillation.

Long-term follow-up of TMV replacement prostheses is warranted, and the current published literature is insufficient. However, if TMV replacement challenges are met with appropriate development and research, it could possibly provide a better solution than transcatheter repair techniques.

- 1. Nkomo VT, Gardin JM, Skelton TN, et al. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–1011.
- Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2014;63:2438-2488.
- Authors/Task Force Members, Vahanian A, Alfleri O, et al. Guidelines on the management of valvular heart disease (version 2012): the joint task force on the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2012;33:2451–2496.
- 4. European Association for Cardio-Thoracic Surgery. Adult cardiac database. https://www.eacts.org/quip/adult-cardiacdatabase. Accessed May 7, 2019.
- 5. Dziadzko V, Clavel MA, Dziadzko M, et al. Outcome and undertreatment of mitral regurgitation: a community cohort study. Lancet. 2018;391:960-969.
- 6. Affieri O, Maisano F, De Bonis M, et al. The double-orifice technique in mitral valve repair: a simple solution for complex problems. J Thorac Cardiovasc Surg. 2001;122:674-681.
- 7. Feldman T, Foster E, Glower DD, et al. Percutaneous repair or surgery for mitral regurgitation. N Engl J Med. 2011;364:1395–1406.
- 8. Stone GW, Lindenfeld J, Abraham WT, et al. Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med. 2018;379:2307–2318.
- 9. Obadia JF, Messika-Zeitoun D, Leurent G, et al. Percutaneous repair or medical treatment for secondary mitral regurgitation. N Engl J Med. 2018;379:2297-2306.
- Neuss M, Schau T, Isotani A, et al. Elevated mitral valve pressure gradient after MitraClip implantation deteniorates long-term outcome in patients with severe mitral regurgitation and severe heart failure. JACC Cardiovasc Interv. 2017;10:931–939.
- 11. Fann JI, St Goar FG, Komtebedde J, et al. Beating heart catheter-based edge-to-edge mitral valve procedure in a porcine model: efficacy and healing response. Circulation. 2004;110:988-993.
- 12. Praz F, Spargias K, Ćhrissoheris M, et al. Compassionate use of the PASCAL transcatheter mitral valve repair system for patients with severe mitral regurgitation: a multicentre, prospective, observational, first-in-man study. Lancet. 2017;390:773-780.
- 13. Maisano F, Taramasso M, Nickenig G, et al. Cardioband, a transcatheter surgical-like direct mitral valve annuloplasty system: early results of the feasibility trial. Eur Heart J. 2016;37:817–825.
- Seeburger J, Rinaldi M, Nielsen SL, et al. Off-pump transapical implantation of artificial neo-chordae to correct mitral regurgitation: the TACT trial (transapical artificial chordae tendinae) proof of concept. J Am Coll Cardiol. 2014;63:914-919.
- 15. Gammie JS, Bartus K, Gackowski A, et al. Beating-heart mitral valve repair using a novel ePTFE cordal implantation device: a prospective trial. J Am Coll Cardiol. 2018;71:25–36.
- 16. Mangieri A, Colombo A, Demir OM, et al. Percutaneous direct annuloplasty with edge-to-edge technique for mitral regurgitation: replicating a complete surgical mitral repair in a one-step procedure. Can J Cardiol. 2018;34:1088.e1-1088.e2.
- 17. von Bardeleben RS, Colli A, Schulz E, et al. First in human transcatheter COMBO mitral valve repair with direct ring annuloplasty and neochord leaflet implantation to treat degenerative mitral regurgitation: feasibility of the simultaneous toolbox concept guided by 3D echo and computed tomography fusion imaging. Eur Heart J. 2018;39:1314-1315.
- 18. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2017;38:2739-2791.
- 19. Goldstein D, Moskowitz AJ, Gelijns AC, et al. Two-year outcomes of surgical treatment of severe ischemic mitral regurgitation. N Engl J Med. 2016;374:344-353.
- 20. Søndergaard L, De Backer O, Franzen OW, et al. First-in-human case of transfemoral CardiAQ mitral valve implantation. Circ Cardiovasc Interv. 2015;8:e002135.
- 21. Bapat V, Rajagopal V, Meduri C, et al. Early experience with new transcatheter mitral valve replacement. J Am Coll Cardiol. 2018;71:12-21.
- 22. Muller DWM, Farivar RS, Jansz P, et al. Transcatheter mitral valve replacement for patients with symptomatic mitral requrgitation: a global feasibility trial. J Am Coll Cardiol. 2017;69:381-391.
- 23. Doshi R, Shah P, Meraj PM. In-hospital outcomes comparison of transfermoral vs transapical transcatheter aortic valve replacement in propensity-matched cohorts with severe aortic stenosis. Clin Cardiol. 2018;41:326-332.
- 24. Meyer CG, Frick M, Lotfi S, et al. Regional left ventricular function after transapical vs. transfermoral transcatheter aprits value implantation analysed by cardiac magnetic resonance feature tracking. Eur Heart J Cardiovasc Imaging.
- 25. Webb JG, Murdoch DJ, Boone RH, et al. Percutaneous transcatheter mitral valve replacement: first-in-human experience with a new transseptal system. J Am Coll Cardiol. 2019;73:1239-1246.
- 26. Yoon SH, Whisenant BK, Bleiziffer S, et al. Outcomes of transcatheter mitral valve replacement for degenerated bioprostheses, failed annuloplasty rings, and mitral annular calcification. Eur Heart J. 2019;40:441-451.
- $27.\ Yoon\,SH,\,Bleiziffer\,S,\,Latib\,A,\,et\,al.\,\,Predictors\,of\,left\,ventricular\,outflow\,tract\,obstruction\,after\,transcatheter$

- mitral valve replacement. JACC Cardiovasc Interv. 2019;12:182-193.
- Bapat V. Mitral valve-in-ring: the good, the bad, and the ugly. EuroIntervention. 2016;11:1192-1194.
 De Backer O, Luk NHV, Søndergaard L. Anatomical challenges for transcatheter mitral valve intervention. J Cardiovasc Surg (Torino). 2016;57:381-392.
- 30. lung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on valvular heart disease. Eur Heart J. 2003;24:1231-1243.
- 31. Colli A, Manzan E, Rucinskas K, et al. Acute safety and efficacy of the NeoChord procedure. Interact Cardiovasc Thorac Surg. 2015;20:575–580.
- 32. Messika-Zeitoun D, Nickenig G, Latib A, et al. Transcatheter mitral valve repair for functional mitral regurgitation using the Cardioband system: 1 year outcomes. Eur Heart J. 2019;40:466-472.
- 33. Sorajja P, Moat N, Badhwar V, et al. Initial feasibility study of a new transcatheter mitral prosthesis: the first 100 patients. J Am Coll Cardiol. 2019;73:1250-1260.
- 34. Verheye S, Cheung A, Leon M, Banai S. The Tiara transcatheter mitral valve implantation system. EuroIntervention. 2015;11:W71-W72.
- 35. Barbanti M, Piazza N, Mangiafico S, et al. Transcatheter mitral valve implantation using the HighLife system. JACC Cardiovasc Interv. 2017;10:1662–1670.
- 36. Dangas GD, Weitz JL, Giustino G, et al. Prosthetic heart valve thrombosis, J Am Coll Cardiol, 2016;68:2670-2689.

Pavel Overtchouk, MD

Department of Cardiology University Hospital of Bern Bern, Switzerland Disclosures: None.

Juan F. Granada, MD

Columbia University Medical Center NewYork-Presbyterian Hospital Cardiovascular Research Foundation New York, New York

Disclosures: Receives grant/research support from Abbott Vascular, Amaranth Medical, AngioMetrix, AstraZeneca, BioVentrix, Boston Scientific Corporation, Caliber Therapeutics, Cardia, Cardiac Implants, Cagent, Cardiovascular Systems, Cardiosolutions, Celladon, Cephea Valve Technologies, Circulite/ Heartware, ControlRad, Corindus Vascular Robotics, CR Bard/Lutonix, DC Devices, Direct Flow Medical, Draper, Edwards Lifesciences, Fulgur Medical, Gore & Associates, Guided Delivery Systems, Intact Vascular, Lutonix, Marvel Medical, Medtronic, Mercator, MedAlliance, Meril Life Sciences, Microvention, Micro Interventional Systems, Mitralign, Neovasc, Nitiloop, Nitinotes, OrbusNeich Medical, Reva Medical, Siemens, SoniVie, Spectranetics Corporation, Svelte, Stentys, Surmodics, Thoratec, uniQure, Volcano, Zenvalve; equity position/consultant to Cephea Valve Technologies.

Thomas Modine, MD, PhD, MBA

Jiao Tong University Shanghai, China Heart Valve Center, Institut Cœur Poumon CHRU Lille Lille, France

t1modine@yahoo.fr
Disclosures: Consultant to Boston Scientific
Corporation, Medtronic, Edwards Lifesciences, Cephea
Valve Technologies, Microport, GE, Abbott; received a
research support grant from Edwards Lifesciences.