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Optical Coherence
Tomography Basics 

O
ptical coherence tomography (OCT) is a
novel, catheter-based, invasive imaging
modality based on near-infrared light rather
than ultrasound, generating high-resolution

images of the arterial wall. This system allows for unparal-
leled imaging resolution of the coronary artery wall,
including plaque characterization, assessment of coro-
nary stent strut apposition, neointimal coverage, vascular
proliferative response, complications related to percuta-
neous coronary intervention (PCI) (ie, focal dissection or
thrombus formation), and information regarding the
time course of stent dissolution for bioabsorbable stents.
We discuss the advantages and limitations of this new
imaging modality, with specific emphasis on its current
clinical and research applications in intracoronary image
generation, as well as future directions of the technology.

INTR AVA SCUL AR OCT SYSTE MS
OCT was initially applied in clinical settings for high-

resolution scanning of the retina.1 This technique was
later adopted for intravascular OCT with a fiber optic
wire that both emits light and records the reflection while
simultaneously rotating and being pulled back along the
length of the artery.2 Because of the shorter wavelength of
infrared light compared to ultrasound, OCT has a 10-fold
higher axial and lateral image resolution (10–20 µm) than
conventional intravascular ultrasound (IVUS) (150–200 µm)
and is therefore able to provide superior arterial wall
image quality (Table 1).3 Thus, OCT has recently been
approved by the US Food and Drug Administration for
human intracoronary imaging and provides a new per-
spective for intravascular imaging and lesion assessment
for interventional cardiologists. 

The intravascular OCT laser light source uses a band-
width in the near-infrared with wavelengths ranging from
1,250 to 1,350 nm.2 Using these wavelengths, tissue pene-

tration is limited to 1 to 3 mm as compared to 4 to 8 mm
achieved by IVUS, with the exception of calcified lesions
in which sound has a limited penetration depth.3 Although
longer wavelengths provide better deep tissue penetra-
tion, the optimal wavelength used in an arterial vessel is
also defined by minimizing tissue absorption of light to
allow more photons in the returning signal. The light
reflection is also maximal at regions in the arterial wall
with the greatest differences in the refractive index—
mechanisms that are not relevant during IVUS. The axial
resolution, determined by the light wavelength, usually
ranges from 12 to 18 µm compared with 150 to 200 µm
for IVUS, and the lateral resolution in catheter-based
OCT is typically 20 to 90 µm as compared with 150 to
300 µm for IVUS.3

Light is spilt, and half is aimed at the arterial wall while
the other half is aimed at a mirror at an equal distance as
the arterial wall. The returning light from both the arteri-
al wall and the mirror interfere with each other, hence
the term “interferometer,” resulting in the creation of an
image or A scan. Multiple A scans are acquired as the
image wire rotates, and a full revolution creates a com-
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TABLE 1.  PHYSICAL CHARACTERISTICS 
OF CURRENTLY AVAILABLE FD OCT 

VERSUS IVUS SYSTEMS
OCT IVUS

Energy source Near-infrared light Ultrasound

Wavelength (µm) 1.3 35–80

Resolution (µm) 10–15 (axial),
40–90 (lateral)

100–200 (axial),
200–300 (lateral)

Frame rate (frames/s) 100–200 30

Pullback rate (mm/s) 10–20 0.5–1

Tissue penetration (mm) 1–2.5 10
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plete cross-section of the vessel wall. A second factor
affecting image formation, which is similar with IVUS, is
the time it takes for emitted light to travel back from the
target tissue to the lens, producing an “echo time delay.”
Further discussion of the physics of OCT is beyond the
scope of this article. However, it is important to mention
that compared to the initial time-domain (TD) OCT sys-
tems, newer generations of intravascular OCT systems,
termed “frequency-domain” or “Fourier-domain” (FD)
OCT, allow the simultaneous detection of reflections
from all echo time delays, resulting in a much faster sys-
tem for image acquisition.4 It is this last advance that has
allowed widespread application of OCT to the catheteri-
zation laboratory, where an entire coronary artery can be
interrogated with a single flush. There are two types of
FD OCT systems, which differ in their method of data
generation: optical frequency domain imaging, also
known as “swept OCT,” and spectral-domain OCT.

OCT DEVICE DE SCRIPTION ,  
IM AGE ACQUISITION ,  AND SAFETY 

Even though the earlier-generation TD OCT systems
have been available for quite some time, the FD OCT
C7-XR system with its C7 Dragonfly catheter (LightLab
Imaging, Inc., a St. Jude Medical, St. Paul, MN) has
recently been approved by the US Food and Drug
Administration as the first OCT system in North
America. The C7-XR system consists of an intravascular
OCT catheter, an imaging engine, and a computer. This
system is equipped with a tunable laser light source with
a sweep range of 1,250 to 1,350 nm. The C7-XR is used
with the Dragonfly imaging catheter, a monorail 2.7-F
catheter system that is compatible with standard curve
6-F guide catheters and has a light source in an optical
fiber that is encased in a rotating torque wire. The
imaging catheter can be delivered over a conventional
0.014-inch coronary guidewire. The OCT catheter is with-
drawn proximal to the analyzed segment using an auto-
mated pullback system during simultaneous contrast
infusion at a rate of approximately 4 mL/s. 

The infrared light is unable to penetrate red blood
cells and, in fact, scatters off the red cells. Thus, OCT
imaging must be performed in a blood-free environ-
ment. Although proximal balloon occlusion of the coro-
nary artery was required to create a blood-free environ-
ment during image acquisition with the earlier TD sys-
tems, accelerated pullback speeds of newer FD OCT sys-
tems permit the use of a single, high-rate bolus injection
of contrast (approximately 4 mL/s) to produce a blood-
free environment, thus eliminating the need for balloon
occlusion.5,6 Contrast is preferred over saline because its
greater viscosity more effectively clears blood from the

vessel being imaged and delays the return of blood as
well. The C7-XR system acquires images at a rate of 100
frames/s at a pullback speed of up to 10 to 20 mm/s.
Thus, a 5-cm length of a coronary artery can be scanned
in less than 3 seconds. Once activated, the C7-XR console
will automatically sense the clearance of blood from the
vessel lumen and initiate an automated pullback at 10
mm/s.7 The images will be displayed on the console unit
for interpretation by the operator. 

Besides the C7-RX system, Terumo Interventional
Systems (Somerset, NJ) is developing an FD OCT system
with a 2.4-F shaft. Volcano Corporation (San Diego, CA)
has a third-generation FD OCT system under develop-
ment with a rapid-exchange nitinol-hybrid drive shaft.8

The goal of all these devices is to scan the proximal
two-thirds of the coronary artery in as little as 1 second
using the Low Volume OCT imaging system (Volcano
Corporation). Developing the Low Volume OCT imaging
system will be the key to allowing interventional cardiol-
ogists to acquire OCT images during a routine coronary
angiographic injection. This extremely low flush volume
is expected to allow for optimal imaging while maximiz-
ing patient safety, clinical utility, and ease of use for the
physician and staff.

The potential procedural risks that are associated with
use of OCT have been shown to be comparable to IVUS
in clinical evaluations thus far.9-13 Transient events, such
as chest discomfort and ST changes, were observed with-
out hemodynamic instability in some patients. The
advantages of the new FD OCT as compared to TD OCT
have been further supported by studies showing lower
mean procedure time, less ischemic changes, and fewer
ischemic symptoms.7

IM AGE INTERPRETATION AND ARTIFACTS
Operator-adjustable manual calibration, so-called Z-

offset, carries critical importance for accurate measure-
ments. For the C7-XR system, four crescent-shaped marks
in the OCT image delineate the outer boundary of the
OCT catheter. The proper alignment of these markers
with the catheter image is important for manual image
calibration.3 This is important because even a small dif-
ference in Z-offset calibration can result in significant dif-
ferences in vascular measurements.14

There are some imaging artifacts that every operator
using OCT needs to be familiar with. Some of these arti-
facts, which are also common with IVUS use, are shown
in Figure 1:

• Residual blood can obscure imaging of the wall and
can mistakenly be labeled as red thrombus.

• Nonuniform rotational distortion similar to IVUS
occurs as a result of variation in the rotational speed
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of the spinning optical fiber, although there is evi-
dence that it is less significant with OCT. 

• Sew-up artifact occurs as a result of misalignment of
the lumen border from subsequent images during
pullback.

• Saturation artifact is the result of light reflection
from a highly specular surface, such as stent struts,
that produce signal amplitudes exceeding the
dynamic range of the data acquisition system. 

• Fold-over artifact occurs when the structural signals
are reflected outside the system’s field of view as
dropouts and typically occur in large vessels or dis-
tant side branches.

• Bubble artifact from small bubbles inside the imag-
ing catheter can produce attenuated images. 

• Sunflower effect occurs as a result of eccentric OCT
catheter positions and can artifactually turn stent
struts toward the light source, creating the mistaken
impression of poor strut apposition to the vessel wall.

Most of the vascular measurements with OCT are very
similar to IVUS (minimal lumen diameter, minimal lumen
area, reference lumen diameter, reference lumen area
lesion length, etc.). 

OCT IN ATHEROSCLEROSIS  IM AGING 
Despite the lack of prospective studies, it is generally

accepted that acute coronary syndromes are primarily
caused by rupture of an inflamed thin-capped
fibroatheroma (TCFA).15-18 TCFA is characterized by
three key components: a large lipid core, inflammatory
cell infiltration, and a thin fibrous cap (Figure 2).19 The
criterion for TCFA on OCT is a lipid-rich plaque (lipid
core occupying > 40% of the vessel wall) with fibrous
cap thickness < 65 µm.15-18 Although TCFAs tend to
localize within the proximal segment of the left anterior
descending artery, they are evenly distributed through-
out the entire left circumflex and right coronary arter-
ies.20 Multiple OCT-derived TCFAs have been observed

Figure 1. Cross-sectional image of the human coronary artery. Most frequently observed artifacts: incomplete blood displace-

ment resulting in light attenuation (A); an eccentric imaging wire can distort stent strut reflection orientation (note that struts

appear to be perpendicular to the light source, this is known as the “sunflower” effect) (B); saturation artifact—some scan lines

have a streaked appearance (C); sew-up artifact due to rapid wire or vessel movement along one frame formation, resulting in

misalignment of the image (D); air bubbles formed inside the catheter produce an attenuated image along the corresponding

arc. Detail reveals the bubbles (bright structures) between 5 and 9 o’clock (E). With fold-over artifact (FD OCT system), the longi-

tudinal view shows that the cross-section is located at the level of a side branch (blue line) (F). Reprinted with permission from

Bezerra HG et al. JACC Cardiovasc Interv. 2009;2:1035–1046.3
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in up to 38% of patients with acute myocardial infarction
in infarct- and noninfarct-related lesions.21 In patients tak-
ing statins, fibrous cap thickness has been shown to
increase compared to controls using OCT as the imaging
tool.22 

The interface between the fibrous cap and the lipid
pool produces a bright OCT reflection. However, because
of both the imaging depth limitation of OCT and light

being absorbed by the arterial wall components, OCT
has difficulty defining the full extent of the lipid pool and
vascular remodeling. On the other hand, in contrast to
ultrasound, light can penetrate calcium, and OCT studies
reported a sensitivity of 96% and specificity of 97% to
detect calcified nodules and probably microcalcifica-
tions, which are also key markers for plaque vulnerability
and lesion complexity for PCI.23,24 

Figure 3. FD OCT measurements at preintervention. FD OCT is a powerful modality to guide PCI. OCT can provide accurate refer-

ence vessel diameter, minimum lumen area, and lesion length. OCT images with sharp depiction of the boundaries between

lumen and vessel wall has practical advantages over IVUS.The OCT images are easier to interpret, and fully automated lumen seg-

mentation reduces the guesswork in lesion determination.This will facilitate correct selection of stent diameter and length in PCI.

Figure 2. OCT imaging of TCFA in the pathogenesis of acute coronary syndromes.TCFA is characterized by a thin fibrous cap

and a large lipid core (A). So-called volcanic erupted base of a ruptured plaque is imaged in a patient who presented with acute

coronary syndrome (B). Intraluminal thrombus is noted with plaque rupture in a patient presenting with a non–ST-elevation

myocardial infarction (C).
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Vascular inflammation with macrophage-rich infil-
trates has previously been identified with OCT by our
group and others; however, it remains unclear if quantita-
tive assessment of an inflammatory cell density may be
determined using OCT images.25-27 Previous studies also
suggested that it is possible to identify thrombus by OCT
and even discriminate between red and white thrombus,
as confirmed by histopathologic correlation.28 The clini-
cal implications of these findings will have to be deter-
mined in prospective clinical trials. 

OCT IN CORONARY INTERVENTION 
OCT image guidance during PCI can be helpful in both

lesion assessment (plaque rupture, stent malapposition,
etc.) as well as in optimal sizing of the stent (reference ves-
sel diameter, lesion length). Additional measurements, such
as minimal lumen area (Figure 3), percent lumen stenosis,
stent apposition, stent expansion, minimal stent cross-sec-
tion area, lumen gain, late lumen loss, and residual stenosis
are all based on the proper evaluation of the lumen/ves-
sel/stent interface and thus are available to OCT.29-32 OCT
images with sharp depiction of the boundaries between
lumen and vessel wall has practical advantages over IVUS.
The OCT images are easier to interpret, and fully automat-
ed lumen segmentation reduces the guesswork in lesion

determination. This should facilitate correct selection of
stent diameter and length in PCI (Figure 4). Although
real-world validation has not yet been performed, typi-
cally, a minimal luminal area of 4 mm2 found in an epi-
cardial coronary artery, excluding the left main, is
thought to represent a significant lesion when OCT
imaging is undertaken, as it would be with IVUS.33

However, there is concern that (1) OCT generates small-
er lumen measurements than IVUS, in part due to bal-
loon occlusion with TD OCT systems, and (2) more
recent IVUS studies are showing that a 4-mm2 cutoff
may be too liberal.

The ability of OCT to penetrate and delineate calci-
um in the vessel wall also makes it well suited to guide
complex interventional strategies in vessels with super-
ficial calcification. Incomplete stent apposition (ISA) has
been implicated as a potential factor in the develop-
ment of late stent thrombosis.34 Compared to IVUS,
OCT has been shown to have a higher sensitivity for
imaging individual stent struts and malapposed strut
assessment.35,36 ISA may occur either acutely at the time
of stent deployment or later as a consequence of vessel
remodeling. In fact, in current clinical stent trials, OCT
imaging has increasingly been used to assess stent
apposition and individual strut coverage with intimal

Figure 4. FD OCT measurements postintervention. OCT can provide minimum and maximum stent areas after stent deploy-

ment and assist with the decision of whether postdilation for optimal stent deployment and stent apposition to the vessel wall

has been achieved.The bifurcation ostium from the main vessel can also be visualized.
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hyperplasia as a safety endpoint.37-41 Histological studies
have revealed that IVUS does not have adequate resolu-
tion to detect the thinnest layer of tissue coverage, and
the perception that lack of neointimal hyperplasia by
IVUS is synonymous to an uncovered strut needs to be
reconsidered.42 Some studies have shown that up to
40% of struts may remain malapposed despite optimal
high-pressure postdilation.43 Late ISA and uncovered
struts are more common in patients with ST-elevation
myocardial infarction.44 The entrapment of thrombus
within the stented segment during primary PCI, which
later resolves, has been proposed as the mechanism
underlying this important observation. The impact of
these observations on patient care has not yet been
determined.

Despite its high resolution, OCT is limited in detect-
ing strut coverage that may only be composed of single
endothelial cells because a normal endothelial coverage
is beyond the resolution of OCT. OCT has also enabled
the detection of procedural complications, such as
edge dissection, that are not detectable with conven-
tional IVUS or coronary angiography (Figure 5).45,46

OCT also has a higher sensitivity than IVUS for detect-
ing tissue prolapse after stenting, although clinical sig-
nificance of this observation remains to be
determined.47,48

FUTURE IMPLICATIONS
Although OCT has emerged as a new intracoronary

imaging modality with high resolution, no large-scale
prospective studies have shown a relationship between
OCT findings and clinical outcomes to date. At present,
OCT is the only imaging technology with a resolution
high enough for detection of TCFA and studying its pro-
gression and regression in patients with coronary athero-
sclerosis. On the other hand, OCT is certainly becoming
an integral tool to study emerging stent technologies,
such as bioabsorbable stents and polymers, and intimal
thickness of other experimental stents. IVUS does not
have the resolution or capability of imaging polymeric
stent struts dissolution or strut intimal thickness. Also,
neointima thickness covering drug-eluting stents has
important clinical implications for predicting late stent
thrombosis and for determining the optimal duration of
dual-antiplatelet therapy. 

CONCLUSION
OCT is a new imaging modality that allows for high-reso-

lution assessment of the coronary artery lumen, coronary
stent strut apposition, neointimal coverage thickness, vas-
cular proliferative response, and PCI-related complications,
such as focal dissection or thrombus formation. Imaging
with OCT appears to have several advantages over IVUS in

Figure 5. OCT and IVUS images of stented lesions. OCT-visualized inadequate stent strut apposition (A1; arrows). It was not

shown clearly on IVUS (A2).Tissue protrusion between stent struts was observed in OCT image (B1; arrow). It was not evident in

the IVUS image (B2). Intracoronary thrombi were identified as intraluminal pedunculated masses without shadow by OCT (C1;

arrows).They were not detected by IVUS (C2). Coronary dissection at the site of the stent edge was demonstrated by OCT (D1;

arrows). IVUS documented dissection (5 o’clock) and clot (2 o’clock) (D2). Reprinted with permission from Kubo T et al. JACC

Cardiovasc Imaging. 2008;1:475–484.11
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the assessment of atherosclerotic plaque morphology and
outcomes of poor stent apposition. However, similar to the
earlier days with IVUS, we will continue to learn more
about this technique, which will require further studies to
reliably obtain and interpret OCT images, leading to a bet-
ter understanding of vulnerable plaque and the optimiza-
tion of treatment algorithms for our patients. ■
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