# Drug-Coated Balloons for Coronary Artery Disease

A discussion on the current state of drug-coated balloons and their use for the prevention of in-stent restenosis.

BY JUAN F. GRANADA, MD, AND WILLIAM A. GRAY, MD

ince the introduction of coronary stents, restenosis has been the most important measure of clinical success, and a great deal of research has been undertaken to help understand the underlying biological mechanisms. <sup>1,2</sup> In-stent restenosis, the result of the interaction of a variety of biological processes beginning immediately after device implantation, is characterized by an excessive proliferation of neointima. <sup>3</sup> Drugeluting stents (DES) reduced recurrent stenosis by effectively inhibiting neointimal proliferation and have become the therapy of choice for the interventional treatment of coronary artery disease. <sup>4</sup> However, this demonstrated clinical efficacy of DES has been challenged by the rare and unpredictable risk of late stent thrombosis. <sup>5</sup>

During the past several years, drug-coated balloons (DCB) have emerged as a therapeutic alternative in treating coronary artery disease. It is believed that the shortterm transfer of antiproliferative agents into the coronary wall can be achieved without requiring a permanently implanted drug delivery system. As a consequence, this technology may offer the potential to reduce the untoward effects associated with polymeric DES technologies. The original data regarding DCB technologies for use in the coronary territory have been derived from small clinical trials using paclitaxel-coated balloons (PCB) in the setting of in-stent restenosis.7 More recent data are emerging using DCB in de novo lesions and other specific coronary applications. In this article, we discuss the basic principles of DCB and the current preclinical and clinical data that are available today for its use in the coronary territory.

### **RATIONALE OF DCB TECHNOLOGY**

The concept of delivering drugs into the vessel wall as a single-time dose treatment during balloon angioplasty has existed for several decades.<sup>8,9</sup> However, in spite of extensive efforts using a variety of transfer methods, several studies have demonstrated a wide variability of drug uptake and clearance of the delivered compounds, thus limiting the technical viability of these methods.<sup>10</sup> In addition, the successful introduction of DES technologies into clinical practice decreased the enthusiasm to develop any other balloon-based drug delivery technologies. Nevertheless, a very important step toward the successful development of the first DCB prototypes was the successful clinical applicability of paclitaxel and sirolimus in the prevention of restenosis after stent implantation.<sup>11,12</sup>

Several technical features make DCB a viable alternative in interventional cardiology. First, by virtue of the large surface area on a balloon that is available for drug delivery, it is possible to achieve a greater and more homogeneous drug transfer profile than with a stent. Second, it is possible that by avoiding the ongoing presence of a polymer, increased biocompatibility (a lesser degree of inflammation related to any possible hypersensitivity reaction) could be achieved, thus resulting in a shorter time requirement for dual-antiplatelet therapy. Third, physician familiarity with balloon use predicts easier operator adoption and may be useful for situations in which DES use is problematic or less effective, such as in ostial disease, small vessels, bifurcations, diffuse disease, etc. A wide variety of DCB platforms are currently under development (Table 1). Although several coating tech-

| Technology                                 | Company                                                 | Drug-Excipient       | Dose (mg/mm²) |  |
|--------------------------------------------|---------------------------------------------------------|----------------------|---------------|--|
| Cotavance<br>(Paccocath Technology)        | Medrad Interventional/Possis (Indianola, PA)            | Paclitaxel-iopromide | 3             |  |
| SeQuent Please                             | B. Braun Interventional Systems Inc.<br>(Bethlehem, PA) | Paclitaxel-iopromide | 3             |  |
| Dior II                                    | Eurocor GmbH (Bonn, Germany) Paclitaxel-sh              |                      | 3             |  |
| Elutax                                     | Aachen Resonance GmbH (Aachen,<br>Germany)              | Paclitaxel           | 2             |  |
| In.Pact Falcon                             | Medtronic, Inc. (Minneapolis, MN)                       | Paclitaxel-urea      | 3             |  |
| Lutonix                                    | Lutonix, Inc. (Maple Grove, MN)                         | Paclitaxel-unknown   | 2             |  |
| antera Lux Biotronik (Berlin, Germany) Pac |                                                         | Paclitaxel-BTHC      | 3             |  |
| Abbott                                     | Abbott Vascular (Santa Clara, CA)                       | Zotarolimus-unknown  | Unknown       |  |

niques have been tested in small human clinical trials, it is still unknown which of the primary clinical applications (in-stent restenosis, de novo, etc) will be the primary niche for this technology.

### DCB AND CORONARY APPLICATIONS

Although the concept of using balloon-based drug delivery in the coronary territory appears to be simple, there are several biological and technological issues that must be considered. The clinical success achieved with the original generation of DCB technologies relies on the single-time transfer of paclitaxel into the vessel wall, with the expectation of a durable biological effect. Therefore,

although it is a potentially elegant approach, this initial loading burst can be unpredictable and depend on both the amount of injury inflicted at the time of inflation and the characteristics of tissue receiving the drug. One of the key lessons learned early in the development of DCB was the need to use a carrier to enhance drug transfer to the vessel wall. Most of the carriers currently in use are non-polymeric in nature and appear to enhance the transfer and biological availability of paclitaxel (Figure 1). In particular, the use of the contrast agent iopromide creates a high molecular surface contact area between the lipophilic drug and the vessel wall, thus enhancing the bioavailability of the drug while remaining biologically inert (Figure 2).<sup>13</sup>

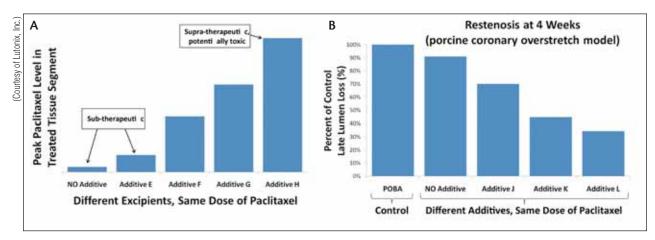



Figure 1. Biological effect of a carrier (excipients) on paclitaxel tissue levels (A) and biological activity (B, angiographic lumen loss in the porcine overstretch model).

Figure 2. Figure describing the mechanism of drug transfer in DCB and the effect of hydrophilic spacers.

Most of the data currently available for antiproliferative agents in DCB technology involve paclitaxel. 14,15 Paclitaxel exerts its potent antiproliferative effect by binding to the ß subunit of tubulin, resulting in arrest of microtubule function. Paclitaxel is characterized by prolonged tissue retention rates, 16 which is desirable in any DCB compound under consideration. Sirolimus and its analogues have also been tested and have been found, at least at the preclinical level, to have a profile that might allow for their consideration as alternatives to paclitaxel.<sup>17</sup> Although small preclinical studies have shown that the short-term delivery of sirolimus may inhibit neointimal proliferation after balloon injury,<sup>17</sup> it is believed that the biologic effect of sirolimus and its analogues may require more stable tissue levels over time and perhaps the development of more sophisticated carriers.<sup>18</sup> Due to its lipophilic profile, zotarolimus appears to have the best profile among the sirolimus analogues for this particular application.19

### PRECLINICAL DATA

The first available preclinical data on DCB used the relatively basic combination of iopromide-paclitaxel directly deposited within the folds of an angioplasty balloon. Using the porcine model of coronary restenosis, bare-metal stents crimped on iopromide-paclitaxel-coated balloons (3 µg of drug per mm<sup>2</sup> of balloon surface) decreased in-stent restenosis compared to the bare-metal stents crimped on uncoated balloons.<sup>20</sup> Using a similar model, Cremers et al confirmed that drug transfer occurs very early after balloon inflation.<sup>21</sup> In addition, in the same study, the safety profile of applying several balloon inflations within the same vascular segment (overlapping) was demonstrated.<sup>21</sup> Interestingly, in contrast to the common late restenosis catch-up phenomenon seen in the porcine model with current DES technologies, the antiproliferative effect for DCB seems to be sustained over time.<sup>20</sup> The impact of the variation of coating composition on safety and efficacy has been recently studied. Cremers et al compared the iopromide-paclitaxel DCB coating with a surface-modified balloon directly coated with paclitaxel alone<sup>22</sup> and found that the iopromide-paclitaxel DCB system resulted in less neointimal formation. Preclinical data using sirolimus analogues delivered on DCB platforms are scarce, as several drug carriers tailored to deliver these compounds are currently under development. A recent report showed that a zotarolimus DCB decreased restenosis compared to balloon angioplasty in a coronary porcine model of restenosis.<sup>23</sup>

### **CLINICAL DATA**

Although most of the biological effects ascribed to DCB are still under investigation, several clinical studies using different DCB technologies in the coronary territory are in progress or have been completed (Table 2). The first report of DCB use in humans was published in 2006.7 In this study, 52 patients with coronary in-stent restenosis were randomized to conventional percutaneous transluminal coronary angioplasty or a 3-mg/mm<sup>2</sup> iopromidepaclitaxel-coated balloon (Paccocath). At 6 months, angiographic follow-up demonstrated a significant difference in the primary endpoint of less in-segment late lumen loss (LLL) in the Paccocath group (LLL =  $0.76 \pm$ 0.86 mm vs 0.09  $\pm$  0.49 mm; P = .003). In an extension of this study, an additional 56 patients with coronary instent restenosis were randomized, and the entire cohort of 108 patients was followed up to 2 years.<sup>24</sup> In this study, the findings were confirmed, and the in-segment LLL described was consistent with the original report (in-segment binary restenosis was 6% in the DCB group vs 51% in the uncoated balloon group). At 24 months, the net clinical effect of the Paccocath technology was maintained, with significant reductions in target lesion revascularization (37% vs 6%; P = .001).

Another group of investigators using a similar Paccocath technology platform (SeQuent Please) have initiated a series of studies (PEPCAD trials) to test this technology in the coronary territory. The PEPCAD I trial

was a nonrandomized study investigating the safety and efficacy of the SeQuent Please DCB in small vessel (mean reference vessel diameter = 2.36 mm) de novo lesions in 120 patients. The formation of the patients were treated with DCB alone; however, 28% of patients were treated with DCB alone; however, 28% of patients required BMS placement due to elastic recoil or severe dissection. In the as-treated subset of patients (treated only with DCB), late lumen loss was 0.18 mm. It is believed that most of the restenosis observed in patients requiring a stent, with late lumen loss of 0.73 mm, was due to geographic miss. In addition, the stent thrombosis rate was lower in the DCB alone group, in spite of a shorter duration of dual-antiplatelet therapy (3 vs 6 months).

PEPCAD II was a multicenter, randomized trial of the

SeQuent Please DCB versus the Taxus Liberté DES (Boston Scientific, Natick, MA) in 131 patients with coronary in-stent restenosis.26 The primary endpoint (6-month in-segment LLL) was significantly lower in the DCB group compared with the DES group (0.17  $\pm$  0.42 mm vs  $0.38 \pm 0.61$  mm; P = .03). At 12 months, there was a trend toward maintaining the differences seen at 6 months (DCB = 6% vs DES = 15%; P = .15). The PEP-CAD III study randomized patients with single de novo atherosclerotic disease to either BMS crimped on the same paclitaxel balloon technology (SeQuent) or the Cypher sirolimus-eluting stent (Cordis Corporation, Bridgewater, NJ) in 637 patients (RVD = 2.5-3.5 mm in diameter and < 24 mm long).27 At 9 months, the primary angiographic endpoint (in-stent LLL) was significantly lower for the DES group compared to the

| Trial Name       | Technology                                                                   | Indication   | Patients (n) | Binary Restenosis                                    |
|------------------|------------------------------------------------------------------------------|--------------|--------------|------------------------------------------------------|
| PEPCAD I         | SeQuent Please                                                               | SVD          | 114          | PCB, 5.5%; PCB + BMS, 41.3%                          |
| PEPCAD II        | SeQuent Please                                                               | ISR          | 131          | PCB, 7%; Taxus Liberté, 20.3%                        |
| PEPCAD III       | SeQuent Please                                                               | De novo      | 637          | PCB + BMS, 13.8%; Cypher, 4.9%                       |
| PEPCAD IV        | SeQuent Please                                                               | De novo (DM) | 160          | 9-month follow-up expected by fourth quarter of 2010 |
| PEPCAD V         | SeQuent Please                                                               | Bifurcations | 56           | PCB, 7.1% (SB)                                       |
| PEPCAD CTO       | SeQuent Please                                                               | СТО          | 50           | 9-month follow-up expected by fourth quarter of 2010 |
| PICCOLETTO       | Dior II                                                                      | SVD          | 57           | PCB, 32.1%; Taxus Liberté, 10.3%                     |
| VALENTINES       | Dior II                                                                      | ISR          | 300          | Data due August 2010                                 |
| PERVIDEO I       | Lutonix                                                                      | ISR          | 40           | Data due October 2010                                |
| Lutonix De Novo  | Lutonix                                                                      | De novo      | 24           | Data due September 2010                              |
| PEPPER           | Pantera Lux                                                                  | ISR          | 80           | Data due October 2010                                |
| IN.PACT CORO ISR | Invatec, Inc.<br>(Bethlehem, PA;<br>recently acquired by<br>Medtronic, Inc.) | ISR          | 23           | PCB, 4%                                              |
| IN.PACT CORO I   | Invatec, Inc.                                                                | De novo      | 30           | Enrolling                                            |
| BELLO            | Invatec, Inc.                                                                | De novo SVD  | 182          | Enrolling                                            |

DCB/BMS group  $(0.16 \pm 0.39 \text{ mm vs } 0.41 \pm 0.51 \text{ mm};$ P < .001). In addition, 9-month clinically driven target lesion revascularization and target vessel revascularization favored the DES group, as did the safety endpoint of stent thrombosis. PEPCAD V was a small dual-center study enrolling patients with bifurcation lesions.<sup>28</sup> Both the main and side branches were ballooned with a paclitaxel DCB. The primary endpoint was procedural success, which was defined as residual in-segment stenosis < 30% in the main branch and < 50% along with TIMI grade 3 flow in the side branch. A total of 28 patients were enrolled, and four patients (14.3%) required a stent in the side branch. At 9 months, the stent thrombosis and significant restenosis of the side branch was similar (two patients, 7.1%). The mean LLL of the side branch at angiographic follow-up was 0.21 ± 0.47 mm. PEPCAD CTO was a 50-patient, single-center study (also in Germany), and follow-up data have not been presented to date.

The PICCOLETTO trial<sup>29</sup> employed a different paclitaxel-eluting balloon technology not involving a drug carrier (Dior). This single-center trial enrolled a total of 80 patients with de novo small vessel (< 2.75 mm) lesions and randomized the patients to either the Dior DCB or to the Taxus Liberté DES. Enrollment was halted before completion due to the significant differences in outcomes seen between the groups. For the 57 patients analyzed (6-month angiographic and clinical follow-up), the percent diameter stenosis (primary endpoint) was significantly worse in the DCB group ( $43.6\% \pm 27.4\%$ ) compared to the control group (24.3%  $\pm$  25.1%; P = .029). In addition, the VALENTINES trial is a multicenter, international, short-term registry designed to assess clinical success and efficacy of the Dior paclitaxel-eluting balloon treatment for in-stent restenosis at 6 to 9 months of follow-up. The total intended sample size is 300 patients, and the primary endpoint is clinical success at 6 to 9 months, which is defined as freedom from major adverse cardiac events (death, myocardial infarction, target lesion revascularization, target vessel revascularization, and stent thrombosis). A cohort of the registry will undergo angiographic follow-up at 6 or 9 months to assess in-stent and in-segment late loss and binary restenosis.

## **FUTURE PERSPECTIVE**

Several small clinical studies using DCB have shown encouraging results for the application of this technology in the coronary territory. However, from this point forward, most of the efforts in DCB development will be focused on improving the potential technical limitations of the technology. The safety and efficacy of DCB

in certain applications, such as overlapping areas and in combination with other ancillary therapies such as atherectomy and stents, need to be further evaluated. Most importantly, the risk of distal embolization of the coating elements and its associated risk for tissue toxicity will need to be fully evaluated. In the future, improvements in various aspects of the technology, including alternative antiproliferative agents, carriers, and coatings, will hopefully result in higher tissue transfer and lower particulate embolization rates. However, as new clinical data emerge, the current clinical application of this technology must remain limited to in-stent restenosis, in which almost all platforms have been shown to be successful compared to other clinically approved coronary technologies. Larger randomized clinical trials have the potential to show expanded clinical applications of DCB and its role in coronary intervention.

Juan F. Granada, MD, is Director and Chief Scientific Officer, Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation; Assistant Professor of Clinical Medicine at Columbia University Medical Center in New York. He has disclosed that he is a paid consultant to Medrad Interventional/Possis and that he receives grant/research funding from Medrad Interventional/Possis, Medtronic, Inc., Abbott Vascular, and Boston Scientific. Dr. Granada may be reached at (845) 580-3084; jgranada@crf.org.

William A. Gray, MD, is Associate Professor of Clinical Medicine at Columbia University Medical Center in New York. He has disclosed that he is a paid consultant to Medrad Interventional/Possis.

- 1. Brower V. Stents and biology combination for restenosis. Nat Biotechnol. 1996;14:422.
- 2. Farb A, Weber DK, Kolodgie FD, et al. Morphological predictors of restenosis after coronary stenting in humans. Circulation. 2002;105:2974-2980.
- Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med. 1994;331:489-495.
- Kirtane AJ, Gupta A, Iyengar S, et al. Safety and efficacy of drug-eluting and bare-metal stents: comprehensive meta-analysis of randomized trials and observational studies. Circulation. 2009;119:3198-3206.
- Nakazawa G, Vorpahl M, Finn AV, et al. One step forward and two steps back with drugeluting-stents: from preventing restenosis to causing late thrombosis and nouveau atherosclerosis. JACC Cardiovasc Imag. 2009;2:625-628.
- Scheller B, Speck U, Abramjuk C, et al. Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation. 2004;110:810-814.
- 7. Scheller B, Hehrlein C, Bocksch W, et al. Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N Engl J Med. 2006;355:2113-2124.
- Hong MK, Wong SC, Farb A, et al. Feasibility and drug delivery efficiency of a new balloon angioplasty catheter capable of performing simultaneous local drug delivery. Coron Artery Dis. 1993;4:1023-1027.
- Wilensky RL, March KL, Hathaway DR. Direct intra-arterial wall injection of microparticles via a catheter: a potential drug delivery strategy following angioplasty. Am Heart J. 1991;122(Pt 1):1136-1140.
- Camenzind E, Bakker WH, Reijs A, et al. Site-specific intracoronary heparin delivery in humans after balloon angioplasty. A radioisotopic assessment of regional pharmacokinetics. Circulation. 1997;96:154-165.

# **COVER STORY**

- 11. Heller PF. Paclitaxel and arterial smooth muscle cell proliferation, Circulation, 1998:97:1651.
- 12. Marks AR. Sirolimus for the prevention of instent restenosis in a coronary artery. N Engl J Med. 2003;349:1307-1309.
- 13. Scheller B, Speck U, Schmitt A, et al. Addition of paclitaxel to contrast media prevents restenosis after coronary stent implantation. J Am Coll Cardiol. 2003;42:1415-1420.
- 14. Herdeg C, Oberhoff M, Baumbach A, et al. Local paclitaxel delivery for the prevention of restenosis: biological effects and efficacy in vivo. J Am Coll Cardiol. 2000;35:1969-1976.
- 15. Herdeg C, Oberhoff M, Baumbach A, et al. Visualization and comparison of drug effects after local paclitaxel delivery with different catheter types. Basic Res Cardiol. 1999;94:454-463.
- 16. Lovich MA, Creel C, Hong K, et al. Carrier proteins determine local pharmacokinetics and arterial distribution of paclitaxel, J Pharm Sci. 2001;90:1324-1335.
- 17. Buerke M, Guckenbiehl M, Schwertz H, et al. Intramural delivery of sirolimus prevents vascular remodeling following balloon injury. Biochim Biophys Acta. 2007;1774:5-15.
- 18. Zou W, Cao G, Xi Y, et al. New approach for local delivery of rapamycin by bioadhesive PLGAcarbopol nanoparticles. Drug Deliv. 2009;16:15-23.
- 19. Chen YW, Smith ML, Sheets M, et al. Zotarolimus, a novel sirolimus analogue with potent anti-proliferative activity on coronary smooth muscle cells and reduced potential for systemic immunosuppression. J Cardiovasc Pharmacol. 2007;49:228-235.
- 20. Scheller B, Kuhler M, Cremers B, et al. Shortand long-term effects of a novel paclitaxel coated stent in the porcine coronary model. Clin Res Cardiol. 2008;97:118-123.
- 21. Cremers B, Speck U, Kaufels N, et al. Drugeluting balloon: very short-term exposure and overlapping. Thromb Haemost. 2009;101:201-206
- 22. Cremers B, Biedermann M, Mahnkopf D, et al. Comparison of two different paclitaxel-coated balloon catheters in the porcine coronary restenosis model. Clin Res Cardiol. 2009;98:325-330.
- 23. Cremers B, Toner J, Schwartz LB, et al. Inhibition of coronary neointimal hyperplasia in swine using a novel zotarolimus-eluting balloon catheter. Eur Heart J. 2009;30(abstract supplement):532.
- 24. Scheller B, Hehrlein C, Bocksch W, et al. Two year follow-up after treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. Clin Res Cardiol. 2008;97:773-781.
- 25. Scheller B. Presented at: 74th Meeting of German Cardiac Society; March 27-30, 2008; Mannheim Germany
- 26. Unverdorben M, Vallbracht C, Cremers B, et al Paclitaxel-coated balloon catheter versus paclitaxel-coated stent for the treatment of coronary instent restenosis. Circulation.
- 2009:119:2986-2994.
- 27. Hamm CW. Presented at: AHA Scientific Sessions; November 14-18, 2009; Orlando, FL. 28. Mathey DG. Presented at: TCT Conference 2009; September 21-25; San Francisco, CA. 29. Cortese B. Presented at: EuroPCR09; May
- 19-22, 2009; Barcelona, Spain.

### (Continued from page 30)

taxel-eluting stent versus a similar bare-metal stent in saphenous vein graft lesions the SOS trial. J Am Coll Cardiol. 2009;53:919-

- 43. Joyal D, Filion KB, Eisenberg MJ. Effectiveness and safety of drug-eluting stents in vein grafts: a meta-analysis. Am Heart J. 2010;159:159-169.
- 44. Tsuchida K, Colombo A, Lefevre T, et al. The clinical outcome of percutaneous treatment of bifurcation lesions in multivessel coronary artery disease with the sirolimus-eluting stent: insights from the arterial revascularization therapies study part II. Eur Heart J. 2007;28:433-442.
- 45. Colombo A, Bramucci E, Sacca S, et al. Randomized study of the crush technique versus provisional side branch stenting in true coronary bifurcations. The coronary bifurcations: application of the crushing technique using sirolimus-eluting stents. Circulation. 2009;119:71-78.
- 46. Colombo A, Moses JW, Morice MC, et al. Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation. 2004;109:1244-1249.
- 47. Pan M, de Lezo JS, Medina A, et al. Rapamycin-eluting stents for the treatment of bifurcated coronary lesions: a randomized comparison of a simple versus complex strategy. Am Heart J. 2004;148:857-864.
- 48. Athappan G, Ponniah T, Jeyaseelan L, et al. True coronary bifurcation lesions: a meta-analysis and review of literature. J Cardiovasc Med (Hagerstown). 2010;11:103-10.
- 49. lakovou I, Ge L, Michev I, et al. Clinical and angiographic outcome after sirolimus-eluting stent implantation in aorto-ostial lesions. J Am Coll Cardiol. 2004;44:967-971.
- 50. Seung KB, Kim YH, Park DW, et al. Effectiveness of sirolimus-eluting stent implantation for the treatment of ostial left anterior descending artery stenosis with intravascular ultrasound guidance. J Am Coll Cardiol. 2005;46:787-792.
- 51. Kelbaek H, Thuesen L, Helqvist S, et al. The stenting coronary arteries in non-stress/benestent disease trial. J Am Coll Cardiol.
- 52. Erglis A, Narbute I, Kumsars I, et al. A randomized comparison of paclitaxel-eluting stents versus bare-metal stents for treatment of unprotected left main coronary artery stenosis. J Am Coll Cardiol. 2007; 50:491-497.
- 53. Mehilli J, Kastrati A, Byrne RA, et al. Paclitaxel-versus sirolimus-eluting stents for unprotected left main coronary artery disease. J Am Coll Cardiol, 2009;53:1760-1768.
- 54. Park SJ, Kim YH, Lee BK, et al. Sirolimus-eluting stent implantation for unprotected left main coronary artery stenosis: comparison with bare-metal stent implantation. J Am Coll Cardiol. 2005;45:351-356.
- 55. Valgimigli M, van Mieghem CA, Ong AT, et al. Short and long-term clinical outcome after drug-eluting stent implantation for the percutaneous treatment of left main coronary artery disease: insights from the Rapamycin-eluting and Taxus stent evaluated at Rotterdam Cardiology Hospital registries. Circulation. 2005;111:1383-1389.
- 56. Lee JY, Park DW, Yun SC, et al. Long term clinical outcomes of sirolimus-versus paclitaxel eluting stents for patients with unprotected left main coronary artery disease. J Am Coll Cardiol. 2009;54:853-859.
- 57. Suttorp MJ, Laarman GJ, Rahel BM et al. Primary stenting of totally occluded native coronary arteries II: a randomized comparison of bare-metal stent implantation with sirolimus-eluting stent implantation for the treatment of total coronary occlusions. Circulation, 2006:114:921-928.
- 58. DeFelice F, Fiorilli R, Parma A, et al. 3-year clinical outcome of patients with chronic total occlusion treated with drug-eluting stents. JACC Cardiovasc Interv. 2009;12:1260-1265.
- 59. Turco MA, Ormiston JA, Popma JJ, et al. Reduced risk of stenosis in small vessels and reduced risk of myocardial infarction in long lesions with the new thin-strut Taxus Liberte stent: 1-year results from the Taxus Atlas program. JACC Cardiovasc Interv. 2008:1:699-709.
- 60. Menozzi A, Solinas E, Ortolani P, et al. Twenty-four month clinical outcomes of sirolimus-eluting stents for the treatment of small coronary arteries: the long-term SES-SMART clinical study. Eur Heart J. 2009;30:2095-2101.
- 61. Mehilli J, Dibra A, Kastrati A, et al. Randomized trial of paclitaxel- and sirolimus-eluting stents in small coronary vessels. Eur Heart J. 2006:27:260-266.
- 62. Togni M, Eber S, Widmer J, et al. Impact of vessel size on outcome after implantation of sirolimus-eluting and paclitaxel-eluting stents: a subgroup analysis of the SIRTAX trial. J Am Coll Cardiol. 2007;50:1123-1131.
- 63. Rodriguez-Granillo GA, Valgimigli M, Garcia-Garcia HM, et al. One-year clinical outcome after coronary stenting of very small vessels using 2.25mm sirolimus- and paclitaxel-eluting stents: a comparison between the RESEARCH and T-SEARCH registries. J Invasive Cardiol. 2005;17:409-412.
- 64. Kereiakes DJ, Wang H, Popma JJ, et al. Periprocedural and late consequences of overlapping Cypher sirolimus-eluting stents: pooled analysis of five clinical trials. J Am Coll Cardiol. 2006;48:21-31.
- 65. Kim YH, Park SW, Lee CW, et al. Comparison of sirolimus-eluting stent, paclitaxel-eluting stent and bare metal stent in the treatment of long coronary lesions. Catheter Cardiovasc Interv. 2006;67:181-187.
- 66. Shishehbor MH, Amini R, Raymond RE, et al. Safety and efficacy of overlapping sirolimus-eluting versus paclitaxel-eluting stents. Am Heart J. 2008;155:1075-1080.
- 67. Nusca A, Lipinksi MJ, Varma A, et al. Safety of drug-eluting stents in patients with left ventricular dysfunction undergoing percutaneous coronary intervention. Am J Cardiol. 2008;102:679-682.
- 68. Gioia G, Matthai W, Benassi A, et al. Improved survival with drug-eluting stent implantation in comparison with bare metal stent in patients with severe left ventricular dysfunction. Catheter Cardiovasc Interv. 2006;68:392-398.
- 69. Sabate M, Jimenez-Quevedo P, Angiolillo D, et al. Randomized comparison of sirolimus-eluting stent versus standard stent for percutaneous coronary revascularization in diabetic patients: the diabetes and sirolimus-eluting stent (DIABETES) trial. Circulation. 2005;112:2175-2183.
- 70. Hermiller JB, Raizner A, Cannon L, et al. Outcomes with the polymer-based paclitaxel-eluting TAXUS stent in patients with diabetes mellitus: the TAXUS IV trial. J Am Coll Cardiol. 2005;45:1172-1179.
- 71. Moussa I, Leon MB, Baim D, et al. Impact of sirolimus-eluting stents on outcome in diabetic patients: a SIRIUS substudy. Circulation. 2004;109:2273-2278.
- 72. Akin I, Bufe A, Schneider S et al. Clinical outcomes in diabetic and non-diabetic patients with drug-eluting stents: results from the first phase of the prospective multicenter German DES.DE registry. Clin Res Cardiol. 2010. [Epub ahead of print]
- 73. Wolf WM, Vlachols HA, Marroquin OC, et al. Paclitaxel-eluting versus sirolimus-eluting stents in diabetes mellitus. Circ Cardiovasc Interv. 2010;3:42-49.
- 74. Mulukutla SR, Vlachos HA, Marroquin OC, et al. Impact of drug-eluting stents among insulin-treated diabetic patients. JACC Cardiovasc Interv. 2008;1:139-147.
- 75. Kedhi E, Joesoef SJ, McFadden E, et al. Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): a randomized trial. Lancet. 2010;375:201-209.