Discharge Management of Patients With Diabetes and ACS

Optimizing long-term outcomes.

BY SUZANNE V. ARNOLD, MD, MHA, AND MIKHAIL KOSIBOROD, MD

ue to multiple advances in the invasive and medical management of patients with acute coronary syndromes (ACS), outcomes have improved significantly during the last 2 decades. 1 However, patients with diabetes continue to experience a higher risk of recurrent adverse cardiac events after ACS, including short- and long-term mortality, compared with patients who do not have diabetes.^{2,3} It is estimated that nearly seven in 10 patients presenting with an acute myocardial infarction have some degree of dysglycemia, with 38% having diabetes and an additional 31% with prediabetes (Figure 1).4 These numbers are likely to increase in the future given the rising prevalence of diabetes and prediabetes in the United States and globally. Therefore, it is critically important to better understand both the reasons behind the high rates of adverse events and the potential opportunities to improve quality of care and outcomes in this important patient group.

As cardiologists, we tend to focus our recommendations on the acute cardiac issues at hand, often with limited consideration of the patient's other chronic diseases. However, in the setting of diabetes, the two disease processes (diabetes and cardiovascular disease) can interact in a number of ways. The presence of diabetes may affect the effectiveness of the cardiac medications (ie, on-target effects). In addition, the cardiac medications may have an impact on the glycemic control of the patient with diabetes (ie, off-target effects). Both of these factors may alter the choice of medications recommended at the time of discharge for the patient with diabetes and ACS.

ON-TARGET EFFECTS

Antianginal Therapies

Due to a number of anatomic and physiologic factors, including more diffuse atherosclerosis⁵ and microvascular impairment,⁶ patients with diabetes report more residual

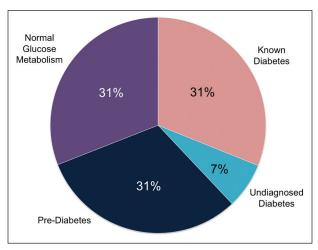


Figure 1. Prevalence of dysglycemia among patients in the United States presenting with acute myocardial infarction.

angina^{7,8} after an ACS event than those without diabetes, and this higher burden of angina persists for at least a year after discharge (Figure 2). Whether this greater burden of angina can be affected by discharge management is less clear. Strategies to reduce the progression of coronary atherosclerosis, including intensive statins and smoking cessation, are clearly indicated in patients with diabetes and ACS and have been shown to be used suboptimally in patients with diabetes.⁹ However, it should be noted that these strategies are also indicated in all ACS patients and have not been shown to be differentially more effective in patients with concomitant diabetes.¹⁰

One potential discharge strategy that has not been explicitly tested but could be considered is preemptive antianginal medications. Typically, during an ACS hospitalization, we perform revascularization, discharge the patient on standard ACS medications, and then wait until follow-up to add or titrate antianginal medications if angina persists. However,

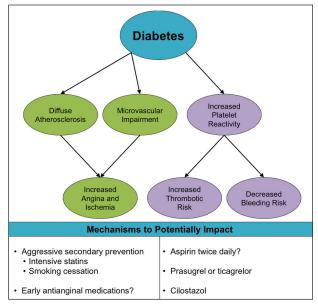


Figure 2. Effects of diabetes on the presentation and management of patients with ACS.

the strongest predictor of whether a patient will have residual angina after an ACS hospitalization is his or her burden of angina in the month prior to the ACS event. As such, patients with diabetes who have a high burden of angina prior to their ACS could potentially benefit from antianginal medications at the time of discharge. While this needs to be formally tested, a similar strategy was essentially evaluated in the MERLIN-TIMI 36 clinical trial, in which empiric ranolazine after ACS resulted in less angina and better quality of life among patients with a history of prior angina. 12

Antiplatelet Agents

Both the hyperglycemia and insulin resistance that accompany diabetes affect platelet reactivity through increased platelet aggregation and impaired response to antithrombotic molecules. Patients with diabetes also have increased platelet turnover, which leads to decreased response to antithrombotic medications.¹³ All of these factors contribute to a greater risk of thrombosis and less bleeding after ACS in patients with diabetes.^{14,15} The question, again, is whether (and how) this can be affected with a change in discharge management. Three mechanisms to reduce platelet reactivity and potentially improve outcomes in patients with diabetes merit consideration. Importantly, however, these three strategies each reduce platelet reactivity and have only been tested individually, and should therefore be used with considerable caution in combination.

First, the aspirin resistance that is common in patients with diabetes¹³ is likely driven by the increased platelet turnover.¹⁶ Although increasing the dose of aspirin has not

been effective at improving overall platelet reactivity, previous pharmacodynamic studies have demonstrated that this resistance can be overcome by increasing the dosing to twice daily.¹⁷ However, the potential benefit of using twice-daily aspirin after ACS, in terms of reducing recurrent ischemic events after ACS, is not yet known and will need to be formally evaluated in large outcomes studies. Second, a more intensive thienopyridine, such as prasugrel or ticagrelor, can improve outcomes in patients with diabetes and ACS. In the TRITON-TIMI 38 trial, prasugrel reduced ischemic events by a greater degree in patients with diabetes compared to those without diabetes. Furthermore, while patients without diabetes had more bleeding with prasugrel versus clopidogrel therapy, there was no difference in bleeding rates between the two treatments among patients with diabetes. 14 In the PLATO trial, there was no differential effect of ticagrelor on ischemic or bleeding events in patients with diabetes (ie, similar relative risk reduction in ischemic events with ticagrelor in patients with and without diabetes).¹⁸ However, in a pharmacodynamic study of patients with diabetes and ACS, loading with ticagrelor resulted in lower platelet reactivity than loading with prasugrel. 19 As such, either prasugrel or ticagrelor may result in better outcomes after ACS in patients with diabetes compared with clopidogrel. Finally, a third strategy is to add cilostazol to dual-antiplatelet therapy. While its use in the United States is generally limited to peripheral artery disease, cilostazol is commonly used as a third antiplatelet agent for ACS patients in Asia. It has been shown to reduce platelet reactivity on top of dual-antiplatelet therapy²⁰ and, in a moderately sized clinical trial, to reduce the incidence of major adverse cardiac events after an ACS—an effect that was particularly pronounced in patients with diabetes.²¹ Furthermore, cilostazol reduces the risk of restenosis after coronary stenting, 22 an event for which patients with diabetes are also at high risk. While these results are promising, larger studies are needed to investigate the effects of cilostazol on top of dual-antiplatelet therapy, specifically in patients with diabetes and ACS.

OFF-TARGET EFFECTS

When selecting medications at discharge for a patient with ACS and diabetes, it is also important to consider how cardiac medications may have an impact on glycometabolic status. While certain clinical factors may contribute to the appropriate selection of medications that adversely affect glycemic control, diabetes-friendly medications should be selected in the absence of such factors (Table 1).

Favorable Glycometabolic Effects

Cardiovascular medications with potentially favorable glycometabolic effects include angiotensin-converting enzyme

TABLE 1. GLYCOMETABOLIC EFFECTS OF TREATMENTS FOR CARDIOVASCULAR DISEASE	
Favorable Glycometabolic Effects	Mixed Glycometabolic Effects
 Angiotensin-converting-enzyme inhibitor and angiotensin II receptor blockers Cilostazol Limited data/might be beneficial Ranolazine 	 Calcium channel blockers Cilnidipine might be better Beta blockers Vasodilating better than traditional
Neutral Glycometabolic Effects	Unfavorable Glycometabolic Effects
ThienopyridinesClonidineHydralazineNitrates	Statins Thiazide diuretics

inhibitors/angiotensin II receptor blockers (renal protection), cilostazol (possible reduction in albuminuria),^{23,24} and ranolazine (possible reduction in HbA1c level).²⁵⁻²⁷ Ranolazine is an antianginal medication that reduces myocardial ischemia at the cellular level (ie, no vasodilation) and has been shown to reduce angina to an even greater degree in patients with poorly controlled diabetes.²⁸ Furthermore, through a reduction in glucagon secretion,²⁹ ranolazine appears to reduce hemoglobin A1c by ~0.5% to 0.7% (clinicaltrials.gov: NCT01163721, NCT01494987, NCT01472185, NCT01555164), an effect that is even more pronounced among patients with poor baseline glycemic control.²⁵⁻²⁷

Mixed Glycometabolic Effects

Calcium channel blockers have traditionally been considered to have neutral metabolic effects. However, a newer medication in this class, cilnidipine, has both N- and L-type inhibitory activity (compared with amlodipine, which has only L-type) and has been shown in a small study to have favorable effects on insulin resistance, triglycerides, and albuminuria.³⁰ If this is confirmed in a larger study, cilnidipine may be beneficial as an antihypertensive and antianginal medication in patients with diabetes.

The metabolic issues associated with beta blockers are both more established and more relevant to the ACS patient population, in which they are indicated for mortality reduction.³¹ Nonvasodilating beta blockers, such as atenolol and metoprolol, reduce heart rate and myocardial contractility, inducing compensatory peripheral vasoconstriction, which leads to increased insulin resistance and a more atherogenic lipid profile.³²⁻³⁴ In contrast, vasodilating beta blockers, such as carvedilol and labetolol, have shown neutral or beneficial effects on metabolic parameters.³³⁻³⁵

In head-to-head trials, patients with diabetes who were treated with vasodilating (vs nonvasodilating) beta blockers had small but significant decreases in hemoglobin A1c levels, improved insulin sensitivity, lower cholesterol levels, less weight gain, and less progression to microalbuminuria.33,36-38 Furthermore, in a real-world population, we found that more than 85% of patients with diabetes were prescribed nonvasodilating beta blockers at discharge for acute myocardial infarction—a practice that was associated with a trend toward increases in HbA1c and intensification of diabetes medications over time.³⁹ Although factors such as arrhythmias or orthostasis may make a nonvasodilating beta blocker more desirable in a patient with ACS and diabetes, a beta blocker that exhibits more beneficial glycometabolic effects would ideally be chosen in a patient with diabetes if none of these factors is present.

Unfavorable Glycometabolic Effects

Multiple studies and meta-analyses have repeatedly demonstrated that statins are associated with a modest, but significant increase in the risk of developing incident diabetes.⁴⁰ Importantly, however, this risk has also been shown to be far overshadowed by the cardiovascular protective effect of statin therapy. 41,42 Therefore, while there may be some apprehension about the impact of statins on glycemic control, intensive statins should be prescribed to all patients with diabetes and ACS, per guidelines.31 At this point, the glycemic effects of statins are believed to be a class effect. A small study of patients with metabolic syndrome has shown promising glycometabolic effects with pitavastatin.⁴³ While this study is encouraging, it had several important limitations, and whether pitavastatin has differential glycemic effects compared with other statins will need to be definitively determined in a larger study before making any specific recommendations about particular statins in patients with ACS and diabetes. At this point, given the greater atherosclerotic disease progression in patients with diabetes, using the most intensive statin that can be tolerated by the patient would be the most appropriate strategy after an ACS event.

Thiazide diuretics, used as antihypertensive medications, also have well-established adverse glycometabolic effects, which are believed to be due to both a reduction in insulin sensitivity and secretion.⁴⁴ In both the ALLHAT and SHEP trials, the chlorthalidone group had higher fasting glucose levels and a greater incidence of new-onset diabetes.^{45,46} However, the clinical relevance of these glycometabolic effects is still questionable. In the short-term follow-up of the trials, these increases in glucose were not associated with increased risk of morbidity or mortality,^{46,47} although new-onset diabetes was associated with an increase in the incidence of coronary heart disease.⁴⁷ Furthermore, in

the overall populations, chlorthalidone reduced adverse cardiovascular events. ^{45,46} However, in a separate cohort study with follow-up up to 16 years, thiazide-associated new-onset diabetes was associated with a nearly threefold increased risk of adverse cardiovascular events, ⁴⁸ which likely indicates that incident diabetes does have clinical importance in the long term, as would be expected.

CONCLUSION

Because patients with diabetes and prediabetes comprise the majority of patients with ACS—a proportion that is only increasing over time—it is becoming ever more important to understand how best to treat a patient with both conditions. Not only does diabetes affect the efficacy of the cardiovascular treatments that we provide (and therefore should affect our treatment choices), but the cardiovascular medications we choose also have an impact on glycemic control. We should strive not to treat patients in silos—with cardiologists only focusing on the heart with limited attention to other conditions—as a more comprehensive approach will maximize the opportunities to improve the quality of care and outcomes and the general health of this high-risk patient group.

Suzanne V. Arnold, MD, MHA, is from the Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Missouri. She has disclosed that she has received consultant honoraria from Novartis. Dr. Arnold may be reached at (816) 932-8606; suz.v.arnold@gmail.com.

Mikhail Kosiborod, MD, is from the Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Missouri. He has disclosed that he has received research grants from the American Heart Association, Genentech, Sanofi-Aventis, Gilead, and Esai, and consultant honoraria from Genentech, Gilead, L Hoffman LaRoche, AstraZeneca, Regeneron, Edwards Lifesciences, Eli Lilly, Amgen, and Takeda.

- 1. Krumholz HM, Wang Y, Chen J, et al. Reduction in acute myocardial infarction mortality in the United States: risk-standardized mortality rates from 1995–2006. JAMA. 2009;302:767–773.
- 2. Haffner SM, Lehto Ś, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229-234.
- 3. Donahoe SM, Stewart GC, McCabe CH, et al. Diabetes and mortality following acute coronary syndromes. JAMA. 2007;298:765–775.
- Arnold SV, Lipska KJ, Li Y, et al. Prevalence of glucose abnormalities among patients presenting with an acute myocardial infarction. Am Heart J. 2014;168:466–470 e1.
- Woodfield SL, Lundergan CF, Reiner JS, et al. Angiographic findings and outcome in diabetic patients treated with thrombolytic therapy for acute myocardial infarction: the GUSTO-I experience. J Am Coll Cardiol. 1996;28:1661–1669.
 Marciano C, Galderisi M, Gargiulo P, et al. Effects of type 2 diabetes mellitus on coronary microvascular function and myocardial perfusion in patients without obstructive coronary artery disease. Eur J Nucl Med Mol Imaging. 2012;39:1199–1206.
- Arnold SV, Spertus JA, Lipska KJ, et al. Association between diabetes mellitus and angina after acute myocardial infarction: analysis of the TRIUMPH prospective cohort study. Eur J Prev Cardiol. 2014 Apr 16. [Epub ahead of print.]
 Peterson PN, Spertus JA, Magid DJ, et al. The impact of diabetes on one-year health status outcomes following acute coronary syndromes. BMC Cardiovasc Disord. 2006;6:41.
- Abdallah MS, Kosiborod M, Tang F, et al. Patterns and predictors of intensive statin therapy among patients with diabetes mellitus after acute myocardial infarction. Am J Cardiol. 2014;113:1267–1272.
- 10. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–1504.
- 11. Arnold SV, Jang JS, Tang F, et al. Prediction of Angina After Percutaneous Coronary Intervention American College of Cardiology Conference. Presented at: ACC.15; March 14—16, 2015; San Diego, CA.
- 12. Arnold SV, Morrow DA, Wang K, et al. Effects of ranolazine on disease–specific health status and quality of life

- among patients with acute coronary syndromes: results from the MERLIN-TIMI 36 randomized trial. Circ Cardiovasc Qual Outcomes. 2008;1:107-115.
- 13. Ferreiro JL, Angiolillo DJ. Diabetes and antiplatelet therapy in acute coronary syndrome. Circulation. 2011;123:798–813.
- 14. Wiviott SD, Braunwald E, Angiolillo DJ, et al. Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel—Thrombolysis in Myocardial Infarction 38. Circulation. 2008;118:1626-1636.
- Grodzinsky A, Amold SV, Wang TY, et al. Lower bleeding risk following PCI in patients with diabetes prescribed prolonged dual antiplatelet therapy. Circulation. 2014;130:A16762.
- 16. Winocour PD. Platelet turnover in advanced diabetes. Eur J Clin Invest. 1994;24 (suppl 1):34-37.
- 17. Capodanno D, Patel A, Dharmashankar K, et al. Pharmacodynamic effects of different aspirin dosing regimens in type 2 diabetes mellitus patients with coronary artery disease. Circ Cardiovasc Interv. 2011;4:180-187.
- 18. James S, Angiolillo DJ, Cornel JH, et al. Ticagrelor vs. dopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial. Eur Heart J. 2010;31:3006-3016.
- Laine M, Frere C, Toesca R, et al. Ticagrelor versus prasugrel in diabetic patients with an acute coronary syndrome. A pharmacodynamic randomised study. Thromb Haemost. 2014;111:273-278.
- 20. Angioillo DJ, Capranzano P, Goto S, et al. A randomized study assessing the impact of cilostazol on platelet function profiles in patients with diabetes mellitus and coronary artery disease on dual antiplatelet therapy: results of the OPTIMUS-2 study. Eur Heart J 2008;79:200-2711
- 21. Han Y, Li Y, Wang S, et al. Cilostazol in addition to aspirin and clopidogrel improves long-term outcomes after percutaneous coronary intervention in patients with acute coronary syndromes: a randomized, controlled study. Am Heart J. 2009;157:733–739
- Douglas JS Jr, Holmes DR Jr, Kereiakes DJ, et al. Coronary stent restenosis in patients treated with cilostazol. Circulation. 2005;112:2826-2832.
- 23. Wada T, Onogi Y, Kimura Y, et al. Cilostazol ameliorates systemic insulin resistance in diabetic db/db mice by suppressing chronic inflammation in adipose tissue via modulation of both adipocyte and macrophage functions. Eur J Pharmacol. 2013;707:120-129.
- 24. Tang WH, Lin FH, Lee CH, et al. Cilostazol effectively attenuates deterioration of albuminuria in patients with type 2 diabetes: a randomized, placebo-controlled trial. Endocrine. 2014;45:293-301.
- 25. Timmis AD, Chaitman BR, Grager M. Effects of ranolazine on exercise tolerance and HbA1c in patients with chronic angina and diabetes. Eur Heart J. 2006;27:42-48.
- 26. Morrow DA, Scirica BM, Chaitman BR, et al. Evaluation of the glycometabolic effects of ranolazine in patients with and without diabetes mellitus in the MERLIN-TIMI 36 randomized controlled trial. Circulation. 2009;119:2032-2039.
- 27. Chisholm JW, Goldfine AB, Dhalla AK, et al. Effect of ranolazine on A1C and glucose levels in hyperglycemic patients with non-ST elevation acute coronary syndrome. Diabetes Care. 2010;33:1163-1168.
- 28. Amold SV, McGuire DK, Spertus JA, et al. Effectiveness of ranolazine in patients with type 2 diabetes mellitus and chronic stable angina according to baseline hemoglobin A1c. Am Heart J. 2014;168:457-465 e2.
- 29. Dhalla AK, Yang M, Ning Y, et al. Blockade of Na+- channels in pancreatic alpha-cells has antidiabetic effects. Diabetes. 2014;63:3545-3556.
- 30. Masuda T, Ogura MN, Moriya T, et al. Beneficial effects of L- and N-type calcium channel blocker on glucose and lipid metabolism and renal function in patients with hypertension and type II diabetes mellitus. Cardiovasc Ther. 2011;29:46-53.
- 31. Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with non-STelevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130:2354-2394.
- 32. Dornhorst A, Powell SH, Pensky J. Aggravation by propranolol of hyperglycaemic effect of hydrochlorothiazide in type II diabetics without alteration of insulin secretion. Lancet. 1985;1:123–126.
- 33. Bakris GL, Fonseca V, Katholi RE, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA. 2004;292:2227-2236.
- 34. Bangalore S, Parkar S, Grossman E, Messerli FH. A meta-analysis of 94,492 patients with hypertension treated with beta blockers to determine the risk of new-onset diabetes mellitus. Am J Cardiol. 2007;100:1254-1262.
- 35. Schmidt AC, Graf C, Brixius K, Scholze J. Blood pressure-lowering effect of nebivolol in hypertensive patients with type 2 diabetes mellitus: the YESTONO study. Clin Drug Investig. 2007;27:841-849.
- 36. Badar VA, Hiware SK, Shrivastava MP, et al. Comparison of nebivolol and atenolol on blood pressure, blood sugar, and lipid profile in patients of essential hypertension. Indian J Pharmacol. 2011;43:437–440.
- Giugliano D, Acampora R, Marfella R, et al. Metabolic and cardiovascular effects of carvedilol and atenolol in non-insulindependent diabetes mellitus and hypertension. A randomized, controlled trial. Ann Intern Med. 1997;126:955-959.
- 38. Torp-Pedersen C, Metra M, Charlesworth A, et al. Effects of metoprolol and carvedilol on pre-existing and new onset diabetes in patients with chronic heart failure: data from the Carvedilol Or Metoprolol European Trial (COMET). Heart. 2007;93:968-973.

 39. Amold SV, Spertus JA, Lipska KJ, et al. Type of beta-blocker use among patients with versus without diabetes after myocar-
- dial infarction. Am Heart J. 2014;168:273-279 e 1.

 40. Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735-742.
- 41. Waters DD, Ho JE, Boekholdt SM, et al. Cardiovascular event reduction versus new-onset diabetes during atorvastatin therapy: effect of baseline risk factors for diabetes. J Am Coll Cardiol. 2013;61:148–152.
- Cholesterol Treatment Trialists' (CCT) Collaborators, Kearney PM, Blackwell L, Collins R, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117-125.
- Chapman MJ, Orsoni A, Robillard P, et al. Effect of high-dose pitavastatin on glucose homeostasis in patients at elevated risk of new-onset diabetes: insights from the CAPITAIN and PREVAIL-US studies. Curr Med Res Opin. 2014;30:775-784.
- Eriksson JW, Jansson PA, Cariberg B, et al. Hydrochlorothiazide, but not candesartan, aggravates insulin resistance and causes visceral and hepatic fat accumulation: the mechanisms for the diabetes preventing effect of candesartan (MEDICA) study. Hypertension. 2008;52:1030-1037.
- 45. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288:2981–2997.
- 46. Kostis JB, Wilson AC, Freudenberger RS, et al. Long-term effect of diuretic-based therapy on fatal outcomes in subjects with isolated systolic hypertension with and without diabetes. Am J Cardiol. 2005;95:29–35.
- 47. Barzilay JI, Davis BR, Cutler JA, et al. Fasting glucose levels and incident diabetes mellitus in older nondiabetic adults randomized to receive 3 different classes of antihypertensive treatment: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2006;166:2191-2201.
- 48. Verdecchia P, Reboldi G, Angeli F, et al. Adverse prognostic significance of new diabetes in treated hypertensive subjects. Hypertension. 2004;43:963–969.