OCT: Ready for Prime Time?

Clinical applications of optical coherence tomography.

BY TAKASHI KUBO, MD, PHD, AND TAKASHI AKASAKA, MD, PHD

ptical coherence tomography (OCT) is an optical analogue of intravascular ultrasound (IVUS). OCT uses near-infrared light to create images. The greatest advantage is its extraordinarily high resolution. OCT has an axial resolution of 10 μ m and a lateral resolution of 20 μ m, which is approximately 10 times higher than that of IVUS. This new intravascular imaging method can provide more detailed structural information about the coronary artery wall compared to conventional imaging methods (Table 1).1

PLAQUE CHARACTERIZATION

OCT allows for the identification of the boundary of the intima and media within the coronary arterial wall, which currently cannot be distinguished by IVUS. In an OCT image, the intima is observed as the signal-rich layer nearest to the lumen, and media is visualized as the signal-poor middle layer. The OCT measurement of intimal thickness is well correlated to histological examination.² OCT has the ability to evaluate subtle intimal

thickening in vivo, which may indicate the early phase of coronary atherosclerosis.

Yabushita et al have developed objective OCT image criteria for differentiating distinct components of atherosclerotic tissue in a large series of autopsy specimens.³ In their histology-controlled OCT study, fibrous plaques were characterized by homogeneous, signal-rich regions; fibrocalcific plaques were characterized by signal-poor regions with sharp borders; and lipid-rich plaques were characterized by signal-poor regions with diffuse borders. Validation testing revealed good intraobserver and interobserver reliability ($\kappa = 0.83-0.84$), as well as excellent sensitivity and specificity: 71%-79% and 97%-98% for fibrous plaques, 95%-96% and 97% for fibrocalcific plagues, and 90%-94% and 90%-92% for lipid-rich plaques, respectively. These definitions have formed the basis of plaque composition interpretation in clinical OCT studies (Figure 1).

VULNERABLE PLAQUE DETECTION

It has been reported that OCT might be the best

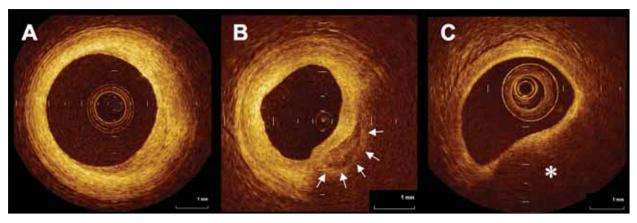


Figure 1. OCT images of coronary atherosclerotic plaques: fibrous plaque (A), fibrocalcific plaque (arrows) (B), and lipidic plaque (*) (C).

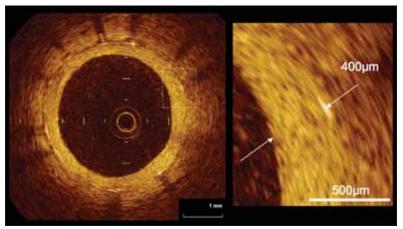


Figure 2. OCT images of neointimal hyperplasia after stent implantation. All stent struts were covered by neointima (left). The thickness of neointimal hyperplasia within the stent was 400 µm (right).

tool available to detect vulnerable plaque.⁴⁻⁷ To assess the ability of each imaging method to detect the specific characteristics of vulnerable plaque, Kubo et al performed OCT, IVUS, and angioscopy in patients with acute myocardial infarction.^{8,9} Their research showed that OCT was superior in detecting plaque rupture (73% vs 40% vs 43%; P = .021), erosion (23% vs 0% vs 3%; P = .021)P = .003), and thrombus (100% vs 33% vs 100%; P < .001) compared to IVUS and angioscopy. Intraobserver and interobserver variability yielded acceptable concordance for these characteristics ($\kappa = 0.61-0.83$). Sawada et al evaluated the feasibility of OCT and virtual histology IVUS for detecting thin-capped fibroatheroma. 10 The high resolution of OCT allows us to identify the thin fibrous cap (< 65 µm). 11,12 Although the positive ratio of virtual histology IVUS for detecting thincapped fibroatheroma was 45.9%, that of OCT was 77.8%.¹⁰ Kume et al demonstrated the abilities of OCT to differentiate thrombus from the vessel wall and to

evaluate thrombus type. Red thrombi (red-blood-cell-rich) were identified as high-backscattering protrusions with signal-free shadowing inside the lumen of the artery, and white thrombi (platelet-rich) were detected as low-backscattering projections.¹³

Furthermore, Tearney et al proposed the potential of OCT to assess macrophage distribution within fibrous caps. 14 There was a high degree of positive correlation between OCT and histological measurements of fibrous cap macrophage density (r < 0.84; P < .0001). A range of OCT signal standard deviation thresholds (6.15% to 6.35%) yielded 100% sensitivity and specificity for identifying caps contain-

ing > 10% CD68 staining.

GUIDANCE OF CORONARY INTERVENTION

Considering the high resolution of OCT, it is not surprising that it provides more detailed morphologic information for monitoring stent deployment than conventional imaging methods. OCT has the ability to detect stent-edge dissection, tissue protrusion, and stent malapposition at a level that is two to three times better than that of IVUS. 15 Moreover, OCT is capable of visualizing the thin-neointimal hyperplasia after drugeluting stent implantation (Figure 2). Recent studies demonstrated that the rate of sirolimus-eluting stent struts with neointimal coverage was > 90% at 12-month follow-up, and most of them were covered by thin neointima of $< 100 \mu m.^{15-18}$ To determine when antiplatelet therapy could be discontinued, OCT provides important information about chronic drug-eluting stent status.

	ОСТ	IVUS	Angioscopy	Angiography
Resolution (μm)	10-20	80–120	10-50	100-200
Probe size (mm)	0.14	0.7	0.8	NA
Type of radiation	Near-IR light	Ultrasound	Visible light	X-ray
Other	Subsurface tomogram	Subsurface tomogram	Surface imaging only	Images of blood flow

LIMITATIONS

The present OCT image-acquisition process requires vessel occlusion by means of gentle balloon inflation plus vessel flushing with saline infusion, because the near-infrared light signals are attenuated by red blood cells. This technique is rather cumbersome and time consuming and does not encourage its routine use. To overcome this limitation, Prati et al have developed a simplified technique for coronary blood removal that is achieved through continuous nonionic contrast administration.¹⁹ This nonocclusive technique of OCT image acquisition is safe and effective and promises to reduce the procedural time.²⁰ A further limitation of OCT is the relatively shallow axial penetration depth of 2 mm; the OCT signal does not reach the back wall of thick atherosclerotic lesions. However, the current OCT is well suited for the assessment of the plaque morphologies within 500 µm of the luminal surface.

CURRENT TECHNOLOGICAL CHALLENGES

Recently, a second-generation OCT technology, termed *frequency-domain OCT*, has been developed and solves the current time-domain OCT problems by imaging at much higher frame rates.²¹ In combination with a short, nonocclusive saline flush and rapid spiral pullback, the higher frame rates generated by frequency-domain OCT enable imaging of the three-dimensional microstructure of long segments of coronary arteries. In addition, frequency-domain OCT facilitates the acquisition of spectroscopic and polarization data for plaque characterization. When this technology is fully utilized, it has the potential to dramatically change the way that physicians and researchers understand coronary artery disease and to better diagnose and treat the disease.

CONCLUSION

The high resolution of OCT provides histology-grade definition of the microstructure of coronary plaque in vivo. OCT provides a greater understanding of the pathophysiology of coronary artery disease and guidance for the appropriate patient-specific therapeutic approach. Although more clinical research and development of this imaging technology are required, we believe OCT will play an important role in the future of cardiology.

Takashi Kubo, MD, PhD, is Assistant Professor,
Department of Cardiovascular Medicine, Wakayama
Medical University in Wakayama, Japan. He has disclosed
that he holds no financial interest in any product or manufacturer mentioned herein. Dr. Kubo may be reached at

+81 73 441 0621; takakubo@wakayama-med.ac.jp.

Takashi Akasaka, MD, PhD, is Professor, Department of Cardiovascular Medicine, Wakayama Medical University in Wakayama, Japan. He has disclosed that he holds no financial interest in any product or manufacturer mentioned herein. Dr. Akasaka may be reached at +81 73 441 0621; akasat@wakayama-med.ac.jp.

- 1. Kubo T, Akasaka T. Recent advances in intracoronary imaging techniques: focus on optical coherence tomography. Exp Rev Med Devices. 2008;5:691-697.
- Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary intima-media thickness by optical coherence tomography: comparison with intravascular ultrasound. Circ J. 2005;69:903-907.
- Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640-1645.
- Tanimoto T, Imanishi T, Tanaka A, et al. Various types of plaque disruption in a culprit coronary artery visualized by optical coherence tomography in a patient with unstable angina. Circ J. 2009;73:187-189.
- Kitabata H, Kubo T, Akasaka T. Identification of multiple plaque ruptures by optical coherence tomography in a patient with acute myocardial infarction: a three-vessel study. Heart. 2008:94:544.
- Tanaka A, Imanishi T, Kitabata H, et al. Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study. Circulation. 2008:118:2368-2373.
- 7. Tanaka A, Imanishi T, Kitabata H, et al. Distribution and frequency of thin-capped fibroatheromas and ruptured plaques in the entire culprit coronary artery in patients with acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol. 2008:102:975-979.
- 8. Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50:933-939.
- Kubo T, Imanishi T, Takarada S, et al. Implication of plaque color classification for assessing plaque vulnerability: a coronary angioscopy and optical coherence tomography investigation. J Am Coll Cardiol Interv. 2008;1:74-80.
- Sawada T, Shite J, Garcia-Garcia HM, et al. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J. 2008;29:1136-1146.
- 11. Kume T, Akasaka T, Kawamoto T, et al. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J. 2006;152:e1-4.
- Takarada S, Imanishi T, Kubo T, et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis. 2009;202:491-497.
- 13. Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol. 2006;97:1713-1717.
- Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107:113-119.
 Kubo T, Imanishi T, Takarada et al. Comparison of vascular response after sirolimuseluting stent implantation between unstable angina pectoris and stable angina pectoris: a serial optical coherence tomography study. J Am Coll Cardiol Imag. 2008;1:475-484.
- Takano M, Inami S, Jang IK, el al. Evaluation by optical coherence tomography of neointimal coverage of sirolimus-eluting stent three months after implantation. Am J Cardiol. 2007;99:1033-1038.
- 17. Matsumoto D, Shite J, Shinke T, et al. Neointimal coverage of sirolimus-eluting stents at 6-month follow-up: evaluated by optical coherence tomography. Eur Heart J. 2007;28:961-967.
- Yao ZH, Matsubara T, Inada T, et al. Neointimal coverage of sirolimus-eluting stents 6 months and 12 months after implantation: evaluation by optical coherence tomography. Chin Med J. 2008;121:503-507.
- 19. Prati F, Cera M, Ramazzotti V, et al. From bench to bedside: a novel technique of acquiring OCT images. Circ J. 2008;72:839-843.
- 20. Kataiwa H, Tanaka A, Kitabata H, et al. Safety and usefulness of non-occlusion image acquisition technique for optical coherence tomography. Circ J. 2008;72:1536-1537.
- Tearney GJ, Waxman S, Shishkov M, et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. J Am Coll Cardiol Imag. 2008;1:752-761.